Home Thermodynamic Prediction of Metastable Coating Structures in PVD Processes
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic Prediction of Metastable Coating Structures in PVD Processes

  • Philip Spencer EMAIL logo
Published/Copyright: January 13, 2022
Become an author with De Gruyter Brill

Abstract

The application of thermodynamic calculation methods to the prediction of ranges of composition of metastable coating structures formed in PVD processes is described. Particular attention is given to available methods for obtaining the stable-to-metastable structural transformation energies necessary to carry out the calculations. Using these methods in combination with experimental calorimetric data, calculations have been carried out with respect to (Ti, Al) N coatings with the hexagonal wurtzite and cubic NaCl structures. Comparison of the predicted ranges of these two structures is also made for a number of other (Me, Al) N systems, where Me is a transition metal.

Abstract

Es wird die Anwendung thermodynamischer Rechen-methoden zur Vorhersage der Zusammensetzungsbereiche metastabiler Schichtstrukturen beschrieben, welche in PVD-Prozessen gebildet werden. Besondere Beachtung liegt dabei auf den verfügbaren Methoden, um die Umwandlungsenergien von der stabilen in die metastabile Struktur zu erhalten, welche für die Berechnung notwendig sind. Mit Hilfe dieser Methoden wurden in Verbindung mit experimentellen kalorimetrischen Daten Rechnungen für (Ti, Al) N-Schichten mit hexagonaler Wurtzit- und kubischer NaCl-Struktur durchgeführt. Die vorhergesagten Existenzbereiche dieser beiden Strukturen werden für mehrere andere (Me, Al) N-Systeme verglichen, wobei Me ein Übergangsmetall ist.


Dr. P. J. Spencer The Spencer Group P. O. Box 393, Trumansburg, NY14886, U.S.A. Fax: +1 607 387 4039

Dedicated to Professor Dr.-Ing. Dieter Neuschütz on the occasion of his 65th birthday


Appendix

Data used for calculations in the AlN–TiN system. Both nitride components are assumed to have the stoichiometric composition.

System: AlN–TiN

HEXAGONAL PHASE – Redlich-Kister-Muggianu model

2 SUBLATTICES, SITES 1: 1 CONSTITUENTS: AL, TI : N

G(HEXAGONAL,AL:N;0)-H298(FCC_A1,AL;0)-H298(1/2_MOLE_N2(G),N;0) = -345837.00+359.862*T-54.3087*T*LN(T)+8.56E-04*T**2+2326000.0*T**(-1)-1.26000E+08*T**(-2)

G(HEXAGONAL,TI:N;0)-H298(1/2_MOLE_N2(G),N;0)-H298(HCP_A3,TI;0) =

-260305.0+330.498*T-52.4587*T*LN(T)-9.28E-04*T**2+1.48976561E-08*T**3 +871000.00*T**(-1)

L(HEXAGONAL,AL,TI:N;0) = 50000

CUBIC PHASE – Redlich Kister-Muggianu model

2 SUBLATTICES, SITES 1: 1

CONSTITUENTS: AL,TI : N

G(CUBIC,AL:N;0)-H298(FCC_A1,AL;0)-H298(1/2_MOLE_N2(G),N;0) = -305837.0+359.862*T-54.3087*T*LN(T)+8.56E-04*T**2+2326000.0*T**(-1) -1.2600E+08*T**(-2)

G(CUBIC,TI:N;0)-H298(1/2_MOLE_N2(G),N;0)-H298(HCP_A3,TI;0) =

-357905.00+330.498*T-52.4587*T*LN(T)-9.28E-04*T**2+1.48976561E-8*T**3 +871000.00*T**(-1)

L(CUBIC,AL,TI:N;0) = 50000

References

1 Saunders, N.; Miodownik, A.P.: J. Mater. Res. 1 (1986) 38.10.1557/JMR.1986.0038Search in Google Scholar

2 Thermodynamic Properties of Inorganic Materials compiled by SGTE, Landolt-Börnstein, New Series, Group IV, Volume 19, Subvolume A – Pure Substances, Subvolume B – Binary Alloys, Springer-Verlag, Berlin (1999 onward).Search in Google Scholar

3 Andersson, J.-O.; Fernandez Guillermet, A.; Hillert, M.; Jansson, B.; Sundman, B.: Acta Metall. 34 (1986) 437.10.1016/0001-6160(86)90079-9Search in Google Scholar

4 Spencer, P.J.; Holleck, H.: High Temp. Sci. 27 (1990) 295.Search in Google Scholar

5 Stolten, H.: Ph.D. Thesis, RWTH Aachen (1991).Search in Google Scholar

6 Stolten, H.; Spencer, P.J.; Neuschütz, D.: J. Chim. Phys. 90 (1993) 209.10.1051/jcp/1993900209Search in Google Scholar

7 Spencer, P.J.; Eriksson, G.; von Richthofen, A., in: Proc. CODATA’94, Chambery, Springer (1998).Search in Google Scholar

8 Spencer, P.: CALPHAD 24 (2000) 72.Search in Google Scholar

9 Pettifor, D.: New Scientist (1986) 48.Search in Google Scholar

10 Spencer, P.J.: Thermochimica Acta 314 (1998) 1.10.1016/S0040-6031(97)00469-3Search in Google Scholar

11 Fernandez Guillermet, A.; Grimvall, G.: Phys. Rev. B 40 (1989) 10582.10.1103/PhysRevB.40.10582Search in Google Scholar

12 Haglund, J.; Grimvall, G.; Jarlborg, T.; Fernandez Guillermet, A.: Phys. Rev. B 43 (1991) 14400.10.1103/PhysRevB.43.14400Search in Google Scholar

13 Fernandez Guillermet, A.; Grimvall, G.: J. Phys. Chem. Solids 53 (1992) 105.10.1016/0022-3697(92)90019-ASearch in Google Scholar

14 Fernandez Guillermet, A.; Haglund, J.; Grimvall, G.: Phys. Rev. B 45 (1992) 11557.10.1103/PhysRevB.45.11557Search in Google Scholar

15 Fernandez Guillermet, A.; Frisk, K.: Unpublished work.Search in Google Scholar

16 Fernandez Guillermet, A.; Haglund, J.; Grimvall, G.: Phys. Rev. B 48 (1993) 11673.10.1103/PhysRevB.48.11673Search in Google Scholar

17 Fernandez Guillermet, A.; Frisk, K.: J. Alloys and Compounds 203 (1994) 77.10.1016/0925-8388(94)90717-XSearch in Google Scholar

18 Knotek, O.; Leyendecker, T.: J. Solid State Chem. 70 (1987) 318.10.1016/0022-4596(87)90071-5Search in Google Scholar

19 Cremer, R.; Witthaut, M.; Neuschütz, D., in: W.D. Cho, H.Y. Sohn (eds.), ‘Value Addition Metallurgy’. The Minerals, Metals & Materials Society (1998) 249.Search in Google Scholar

Received: 2001-04-24
Published Online: 2022-01-13

© 2001 Carl Hanser Verlag, München

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2001-0209/html
Scroll to top button