Startseite Technik Thermodynamic properties of cerium molybdate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodynamic properties of cerium molybdate

  • Ai Nozaki , Masao Morishita , Yoshiki Kinoshita und Hiroaki Yamamoto
Veröffentlicht/Copyright: 7. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ce2(MoO4)3 is a harmful phase formed in waste glasses from nuclear fuel. To determine the third-law entropy of Ce2(MoO4)3, the isobaric heat capacities, Cp,m°, were measured with a relaxation-method instrument at 2–300 K. The standard entropy, Δ0TSm°, at 298.15 K was determined with fitting functions including the Debye–Einstein formula including electronic and spin-wave terms. The Néel temperature, TN, was estimated by extrapolation from the magnetic term in this fitting function. The phase stability of Ce2(MoO4)3 is discussed in terms of its standard Gibbs energy of formation, ΔfGm°, which was derived by combining the values for Sm°determined in this study with reference data for the standard enthalpy of formation, ΔfHm°.


Correspondence address, Dr. Ai Nozaki, Department of Chemical Engineering and Materials Science, University of Hyogo, 2167 Shosha, Himeji, 6771-2201, Japan, Tel: +81-79-267-4005, e-mail:

References

[1] M.E.Ragoussi, S.Brassinnes: Radiochim. Acta103 (2015) 679685. 10.1515/ract-2015-2392Suche in Google Scholar

[2] H.Gamsjäger, J.Bugajski, T.Gajda, R.J.Lemire, W.Preis: Chemical Thermodynamics of Nickel, Nuclear Energy Agency, Organization for Economic Co-operation, Develpopment, Eds., Vol. 6, Chemical Thermodynamics, North Holland Elsevier Science Publisher B.V., Amsterdam (2005) 44.Suche in Google Scholar

[3] M.Morishita, H.Houshiyama: Mater. Trans.56 (2015) 545549. 10.2320/matertrans.M2014470Suche in Google Scholar

[4] H.Gamsjäger, M.Morishita: Pure Appl. Chem.87 (2015) 461476. 10.1515/pac-2014-1105Suche in Google Scholar

[5] M.Morishita, M.Fukushima, H.Houshiyama: Mater. Trans.57 (2016) 4651. 10.2320/matertrans.M2015189Suche in Google Scholar

[6] E.Gamsjäger, M.Morishita, H.Gamsjäger: Monatsh. Chem. Chem. Mon.147 (2016) 263267. 10.1007/s00706-015-1588-3Suche in Google Scholar

[7] Y.Kinoshita, M.Morishita, A.Nozaki, H.Yamamoto: J. Jpn. Ins. Metal.81 (2017) 485493. 10.2320/jinstmet.JAW201703Suche in Google Scholar

[8] M.Morishita, H.Houshiyama, Y.Kinoshita, A.Nozaki, H.Yamamoto: Mater. Trans58 (2017) 868. 10.2320/matertrans.M2017005Suche in Google Scholar

[9] M.Morishita, Y.Kinoshita, H.Houshiyama, A.Nozaki, H.Yamamoto: J. Chem. Thermodyn.114 (2017) 3043. 10.1016/j.jct.2017.05.021Suche in Google Scholar

[10] M.Morishita, Y.Kinoshita, H.Tanaka, A.Nozaki, H.Yamamoto: Monatsh. Chem. Chem. Mon.149 (2018) 341356. 10.1007/s00706-017-2128-0Suche in Google Scholar

[11] Y.Kinoshita, M.Morishita, A.Nozaki, H.Yamamoto: Mater. Trans.60 (2018) 111120. 10.2320/matertrans.M2018305Suche in Google Scholar

[12] M.Morishita, Y.Kinoshita, A.Nozaki, H.Yamamoto: Appl. Geochem.98 (2018) 310320. 10.1016/j.apgeochem.2018.08.023Suche in Google Scholar

[13] M.Morishita, A.Navrotsky, M.C.Wilding: J. Am. Ceram. Soc.87 (2004) 15501555. 10.1111/j.1551-2916.2004.01550.xSuche in Google Scholar

[14] W.Haller, D.H.Blackburn, F.E.Wagstaff, R.J.Charles: J. Am. Ceram. Soc.53 (1970) 3439. 10.1111/j.1151-2916.1970.tb11995.xSuche in Google Scholar

[15] Y.Kawamoto, K.Clemens, M.Tomozawa: J. Am. Ceram. Soc.64 (1981) 292296. 10.1111/j.1151-2916.1981.tb09605.xSuche in Google Scholar

[16] H.Wakabayashi, S.Fukumoto, H.Yanaka, R.Terai: Yogyo-Kyokai-Shi95 (1987) 486. 10.2109/jcersj1950.95.1101_486Suche in Google Scholar

[17] N.C.Hyatt, R.J.Short, R.J.Hand, W.E.Lee: Ceram. Trans.168 (2005) 179187.Suche in Google Scholar

[18] M.Morishita, K.Koyama: Z. Metallkd.94 (2003) 967971. 10.3139/146.030967Suche in Google Scholar

[19] M.Morishita, K.Koyama, K.Tsuboki: Z. Metallkd.95 (2004) 708712. 10.3139/146.018007Suche in Google Scholar

[20] M.Morishita, K.Koyama, S.Shikata, M.Kusumoto: Metallkd. Mater. Trans.B 35 (2004) 891895. 10.1007/s11663-004-0083-8Suche in Google Scholar

[21] M.Morishita, K.Koyama, S.Shikata, M.Kusumoto: Z. Metallkd.96 (2005) 3237. 10.3139/146.018072Suche in Google Scholar

[22] M.Morishita, H.Yamamoto, K.Tsuboki, Y.Matsumoto: Mater. Trans.47 (2006) 15551559. 10.2320/matertrans.47.1555Suche in Google Scholar

[23] M.Morishita, H.Yamamoto, M.Kodera, K.Ikeda, S.Miura, Y.Yamada: Thermochim. Acta526 (2011) 9098. 10.1016/j.tca.2011.08.025Suche in Google Scholar

[24] M.Morishita, K.Ikeda, N.Nishimura, S.Miura, Y.Yamada: J. Phys. Chem.C 116 (2012) 2048920495. 10.1021/jp301259nSuche in Google Scholar

[25] M.Morishita, H.Yamamoto, S.Shikada, M.Kusumoto, Y.Matsumoto, A.Onoue, N.Nishimura, H.Ohtani: Int. J. Quantum Chem.109 (2009) 26952705. 10.1002/qua.22060Suche in Google Scholar

[26] M.Morishita, H.Yamamoto, S.Shikada, M.Kusumoto, Y.Matsumoto: Mater. Trans.51 (2010) 17051708. 10.2320/matertrans.MAW201024Suche in Google Scholar

[27] S.Dash, N.K.Shukla: J. Therm. Anal. Calorim.112 (2013) 193200. 10.1007/s10973-012-2850-0Suche in Google Scholar

[28] R.Pankajavalli, O.M.Sreedharan: J. Nucl. Mater.172 (1990) 151154. 10.1016/0022-3115(90)90432-MSuche in Google Scholar

[29] M.S.Samant, S.R.Bharadwaj, A.S.Kerkar, S.R.Dharwadkar: J. Nucl. Mater.200 (1993) 157161. 10.1016/0022-3115(93)90325-SSuche in Google Scholar

[30] Z.Singh, S.Dash, R.Prasad, V.Venugopal: J. Alloys Compd.244 (1996) 8589. 10.1016/S0925-8388(96)02429-2Suche in Google Scholar

[31] M.Morishita, A.Navrotsky: J. Am. Ceram. Soc.86 (2003) 19271932. 10.1111/j.1151-2916.2003.tb03583.xSuche in Google Scholar

[32] K.Koyama, M.Morishita, T.Harada, N.Maekawa: Metall. Mater. Trans. B,34 (2003) 653659. 10.1007/s11663-003-0036-7Suche in Google Scholar

[33] S.Dash, Z.Singh, N.D.Dahale, R.Prasad, V.Venugopal: J. Alloys Compd.302 (2000) 7581. 10.1016/s0925-8388(99)00822-1Suche in Google Scholar

[34] E.V.Suleimanov, A.V.Golubev, E.V.Alekseev, C.A.Geiger, W.Depmeier, V.G.Krivovichev: J. Chem. Thermodyn.42 (2010) 873878. 10.1016/j.jct.2010.02.011Suche in Google Scholar

[35] G.Chattopadhyay, S.N.Tripathi, A.S.Kerkar: J. Am. Ceram. Soc.67 (1984) 610614. 10.1111/j.1151-2916.1984.tb19604.xSuche in Google Scholar

[36] S.N.Tripathi, G.Chattopadhyay, A.S.Kerkar, M.S.Chandrasekharaiah: J. Am. Ceram. Soc.68 (1985) 232235. 10.1111/j.1151-2916.1985.tb15314.xSuche in Google Scholar

[37] Q.Huang, J.Xu, W.Li: Solid State Ionics32–33 (1989) 244249. 10.1016/0167-2738(89)90228-2Suche in Google Scholar

[38] J.S.Hwang, K.J.Lin, C.Tien: Review of Scientific Instruments,68 (1997) 94101. 10.1063/1.1147722Suche in Google Scholar

[39] J.C.Lashley, M.F.Hundley, A.Migliori, J.L.Sarrao, P.G.Pagliuso, T.W.Darling, M.Jaime, J.C.Cooley, W.L.Hults, L.Morales, D.J.Thoma, J.L.Smith, J.Boerio-Goates, B.F.Woodfield, G.R.Stewart, R.A.Fisher, N.E.Phillips: Cryogenics43 (2003) 369378. 10.1016/S0011-2275(03)00092-4Suche in Google Scholar

[40] Q.Shi, T.J.Park, J.Schliesser, A.Navrotsky, B.F.Woodfield: J. Chem. Thermodyn.72 (2014) 7784. 10.1016/j.jct.2014.01.021Suche in Google Scholar

[41] M.Okaji: Teion-Kougaku36 (2001) 4650. 10.2221/jcsj.36.46Suche in Google Scholar

[42] Q.Shi, L.Zhang, M.E.Schlesinger, J.Boerio-Goates, B.F.Woodfield: J. Chem. Thermodyn.62 (2013) 3542. 10.1016/j.jct.2013.02.017Suche in Google Scholar

[43] J.M.Schliesser, S.J.Smith, G.Li, L.Li, T.F.Walker, T.Parry, J.Boerio-Goates, B.F.Woodfield: J. Chem. Thermodyn.81 (2015) 311322. 10.1016/j.jct.2014.08.002Suche in Google Scholar

[44] L.Wu, J.Schliesser, B.F.Woodfield, H.Xu, A.Navrotsky: J. Chem. Thermodyn.93 (2016) 17. 10.1016/j.jct.2015.09.019Suche in Google Scholar

[45] C.Ma, Q.Shi, B.F.Woodfield, A.Navrotsky: J. Chem. Thermodyn.60 (2013) 191196. 10.1016/j.jct.2013.01.004Suche in Google Scholar

[46] J.E.Gordon, C.Marcenat, J.P.Franck, I.Isaac, G.Zhang, R.Lortz, C.Meingast, F.Bouquet, R.A.Fisher, N.E.Phillips: Phys. Rev.B 65 (2001). 10.1103/PhysRevB.65.024441Suche in Google Scholar

[47] M.Dixon, F.E.Hoare, T.M.Holden, D.E.Moody: The Low Temperature Specific Heats of Some Pure Metals (Cu, Ag, Pt, Al, Ni Fe Co), Proc. Royal Society of London,Vol. 285, London (1965) 561580. 10.1098/rspa.1965.0125Suche in Google Scholar

[48] C.Kittel: Elementary Solid State Physics, John Wiley & Sons. Inc., New York (1962) 4565.Suche in Google Scholar

[49] T.H.K.Barron, G.K.White: Heat Capacity and Thermal Expansion at Low Temperatures, Plenum Publishers, New York (1999) 234. 10.1007/978-1-4615-4695-5Suche in Google Scholar

[50] K.K.Kelley, E.G.King: Contribution to the Data Theoretical Metallurgy, Part 16., Bur. Mines Invest. Bull.592 (1961) 1149.Suche in Google Scholar

[51] J.M.D.Coey, S.Von Molnar, A.Torressen: J. Less Common Met.151 (1989) 191194. 10.1016/0022-5088(89)90316-0Suche in Google Scholar

[52] M.Morishita, K.Koyama, T.Shiraga: Microelectronic Engineering81 (2005) 382388. 10.1016/j.mee.2005.03.037Suche in Google Scholar

[53] K.Niira: Phys. Rev.117 (1960) 129133. 10.1103/PhysRev.117.129Suche in Google Scholar

[54] R.A.Fisher, F.Bouquet, N.E.Phillips, J.P.Franck, G.Zhang, J.E.Gordon, C.Marcenat: Phys. Rev.B 64 (2001) 134425. 10.1103/PhysRevB.64.134425Suche in Google Scholar

[55] C.L.Snow, Q.Shi, J.Boerio-Goates, B.F.Woodfield: J. Phys. Chem.C 114 (2010) 2110021108. 10.1021/jp1072704Suche in Google Scholar

[56] F.J.Morin, J.P.Maita: Phys. Rev.129 (1963) 11151120. 10.1103/PhysRev.129.1115Suche in Google Scholar

[57] L.M.Khriplovich, I.E.Paukov: J. Chem. Therm.15 (1983) 333337. 10.1016/0021-9614(83)90062-9Suche in Google Scholar

[58] J.R.Taylor: An Introduction to Error Analysis: The Study of Uncertainty in Physical Measurement. Oxford University Press, Oxford (1982).Suche in Google Scholar

[59] J.M.Lock: Proc. Phys. Soc. London Sect.B 70 (1957) 566576. 10.1088/0370-1301/70/5/303Suche in Google Scholar

[60] T.Miyake, H.Akai: J. Phys. Soc. Jpn.87 (2018) 41009. 10.7566/JPSJ.87.041009Suche in Google Scholar

[61] J.F.Herbst, L.G.Hector: J. Alloys Compd.693 (2017) 238244. 10.1016/j.jallcom.2016.09.138Suche in Google Scholar

[62] W.W.Weller, E.G.King: Bur. Mines Rep. Invest.6147 (1963).Suche in Google Scholar

[63] D.L.Martin: Phys. Rev.B 8 (1973) 53575360. 10.1103/PhysRevB.8.5357Suche in Google Scholar

[64] R.Stevens, J.Boerio-Goates: J. Chem. Thermodyn.36 (2004) 857863. 10.1016/j.jct.2004.06.008Suche in Google Scholar

[65] R.Sabbah, A.Xu-Wu, J.S.Chickos, M.L.P.Leitão, M.V.Roux, L.A.Torres: Thermochim. Acta331 (1999) 93204. 10.1016/S0040-6031(99)00009-XSuche in Google Scholar

[66] I.Barin: Thermochemical Data of Pure Substance, Part II, VCH Verlag (1989) 1044.Suche in Google Scholar

[67] D.D.Wagman, W.H.Evans, V.B.Parker, R.H.Schumm, I.Halow, S.M.Bailey, K.L.Churney, R.L.Nuttall: J. Phys. Chem. Ref. Data11 (1982) 234.Suche in Google Scholar

[68] A.P.Zhidikowa, S.D.Malinin: Geokhimiya (1972) 28.Suche in Google Scholar

[69] M.E.Essington: Environ. Sci. Technol.24 (1990) 214. 10.1021/es00072a010Suche in Google Scholar

[70] B.Grambow, R.Müller, A.Rother: Radiochim. Acta58–59 (1992). 10.1524/ract.1992.5859.1.71Suche in Google Scholar

[71] A.R.Felmy, D.Rai, M.J.Mason: J. Solution Chem.21 (1992) 525532. 10.1007/bf00649561Suche in Google Scholar

[72] H.Gamsjäger: Pure Appl. Chem.85 (2013) 20592076. 10.1351/pac-con-13-01-04Suche in Google Scholar

[73] A.R.Felmy, D.Rai, M.J.Mason, R.W.Fulton: Radiochim. Acta69 (1995) 177183. 10.1524/ract.1995.69.3.177Suche in Google Scholar

Received: 2018-11-13
Accepted: 2019-03-05
Published Online: 2019-08-07
Published in Print: 2019-08-12

© 2019, Carl Hanser Verlag, München

Heruntergeladen am 12.1.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.111794/html?lang=de
Button zum nach oben scrollen