3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
-
Xin Li
, Hongxia Li , Wei Dong , Haiying Qin , Junhua Xi and Zhenguo Ji
Abstract
In this study, 3-dimensional nanoflower structured TiO2 photoanodes were successfully grown onto tin oxide doped with fluorine substrates. X-ray diffraction and scanning electron microscopy were performed. The 3-dimensional TiO2 nanoflowers presented improved photoelectrochemical performance compared with a TiO2 layer. Meanwhile, TiO2 nanoflowers with 2.5 h preparation time substantially increased the production of H2 compared with the TiO2 layer. The improved performance could be ascribed to the 3-dimensional nanoflower structure with many carriers and fast reaction kinetics, which enhanced light absorption and enlarged the contact area between the photoanode and electrolyte. Moreover, this nanoflower structure with trunks connected to the FTO substrate also improved the transfer of photogenerated carriers.
References
[1] A.Fujishima, K.Honda: Nature238 (1972) 38. 10.1038/238037a0Search in Google Scholar PubMed
[2] J.H.Yang, D.G.Wang, H.X.Han, C.Li: Acc. Che. Res.46 (2013) 1900. PMid:23530781; 10.1021/ar300227eSearch in Google Scholar PubMed
[3] W.B.Hou, S.B.Cronin: Adv. Funct. Mater.23 (2013) 1612. 10.1002/adfm.201202148Search in Google Scholar
[4] H.Kato, A.Kudo: J. Phy. Chem.B 106 (2002) 5029–5034. 10.1002/chin.200232018Search in Google Scholar
[5] P.R.Mishra, P.K.Shukla, O.N.Srivastava: Int. J. Hydrogen Energy32 (2007) 1680. 10.1016/j.ijhydene.2006.10.002Search in Google Scholar
[6] Y.F.Zhang, S.J.Park: Appl. Catal. B: Environ.240 (2019) 92. 10.1016/j.apcatb.2018.08.077Search in Google Scholar
[7] P.Y.Zhang, T.Song, T.T.Wang, H.P.Zeng: Appl. Catal. B: Environ.225 (2018) 172. 10.1016/j.apcatb.2017.11.076Search in Google Scholar
[8] Y.F.Zhang, S.J.Park: J. Catal.361 (2018) 238. 10.1016/j.jcat.2018.03.010Search in Google Scholar
[9] Y.F.Zhang, S.J.Park: J. Catal.355 (2017) 1. 10.1016/j.jcat.2017.08.007Search in Google Scholar
[10] Y.F.Zhang, S.J.Park: Carbon122 (2017) 287. 10.1016/j.carbon.2017.06.085Search in Google Scholar
[11] Y.F.Zhang, S.J.Park: J. Mater. Chem.A 6 (2018) 20304. 10.1039/C8TA08385ASearch in Google Scholar
[12] J.H.Park, S.Kim, A.J.Bard: Nano Lett.6 (2006) 24. PMid:16402781; 10.1021/nl051807ySearch in Google Scholar PubMed
[13] S.Y.Chae, P.Sudhagar, A.Fujishima, Y.J.Hwang, O.S.Joo: Phys. Chem. Chem. Phys.17 (2015) 7714. PMid:25711207; 10.1039/c4cp05793gSearch in Google Scholar PubMed
[14] S.S.Mali, P.S.Shinde, C.A.Betty, P.N.Bhosale, W.J.Lee, P.S.Patil: Appl. Surf. Sci.257 (2011) 9737. 10.1016/j.apsusc.2011.05.119Search in Google Scholar
[15] N.D.Abazović, M.I.Čomor, S.Zec, J.M.Nedeljković, E.Piscopiello, A.Montone, M.V.Antisari: J. Am. Ceram. Soc.92 (2009) 894. 10.1111/j.1551-2916.2009.02962.xSearch in Google Scholar
[16] A.Kusior, A.Wnuk, A.Trenczek-Zajac, K.Zakrzewska, M.Radecka: Int. J. Hydrogen Energy40 (2015) 4936. 10.1016/j.ijhydene.2015.01.103Search in Google Scholar
[17] A.Trenczek-Zajac, A.Kusior, M.Radecka: Int. J. Hydrogen Energy41 (2016) 7548. 10.1016/j.ijhydene.2015.12.219Search in Google Scholar
[18] J.T.Li, N.Q.Wu: Catal. Sci. Technol.5 (2014) 1360. 10.1039/c4cy00974fSearch in Google Scholar
[19] D.Kang, T.W.Kim, S.R.Kubota, A.C.Cardiel, H.G.Cha, K.S.Choi: Chem. Rev.115 (2015) 12839. PMid:26538328; 10.1021/acs.chemrev.5b00498Search in Google Scholar PubMed
[20] W.G.Yang, Y.H.Yu, M.B.Starr, X.Yin, Z.D.Li, A.Kvit, S.Wang, P.Zhao, X.D.Wang: Nano Lett.15 (2015) 7574. 10.1021/acs.nanolett.5b03988Search in Google Scholar PubMed
[21] N.S.Lewis: Science351 (2016) 5117. PMid:26798020; 10.1126/science.aad1920Search in Google Scholar PubMed
[22] C.H.Li, C.Koenigsmann, W.D.Ding, B.Rudshteyn, K.R.Yang, K.P.Regan, S.J.Konezny, V.S.Batista, G.W.Brudvig, C.A.Schmuttenmaer, J.H.Kim: J. Am. Chem. Soc.137 (2015) 1520. 10.1021/ja5111078Search in Google Scholar PubMed
[23] K.Sivula, F. LeFormal, M.Gratzel: ChemSusChem4 (2011) 432. PMid:21416621; 10.1002/cssc.201000416Search in Google Scholar PubMed
[24] J.J.Su, Z.D.Li, Y.Q.Zhang, Y.J.Wei, X.D.Wang: RSC Adv.6 (2016) 16177. 10.1039/C5RA26309CSearch in Google Scholar
[25] Q.N.Sun, Y.P.Peng, H.Chen, K.L.Chang, Y.N.Qiu, S.W.Lai: J. Hazard. Mater.319 (2016) 121. 10.1016/j.jhazmat.2016.02.078Search in Google Scholar PubMed
[26] J.Lu, H.H.Wang, D.L.Peng, T.Chen, S.J.Dong, Y.Chang: PHYSICA E.78 (2016) 41. 10.1016/j.physe.2015.11.035Search in Google Scholar
[27] Y.Shi, J.Wang, C.Wang, T.T.Zhai, W.J.Bao, J.J.Xu, X.H.Xia, H.Y.Chen: J. Am. Chem. Soc.137 (2015) 7365. 10.1021/jacs.5b01732Search in Google Scholar PubMed
[28] T.T.Isimjan, A.E.Ruby, S.Rohani, A.K.Ray: Nanotechnology.21 (2010) 055706. PMid:20023311; 10.1088/0957-4484/21/5/055706Search in Google Scholar PubMed
[29] M.Shen, Z.P.Yan, L.Yang, P.W.Du, J.Y.Zhang, B.Xiang: Chem. Commun.50 (2014) 15447. PMid:24622694; 10.1039/C4CC07351GSearch in Google Scholar
[30] L.Q.Ye, X.L.Jin, X.X.Ji, C.Liu, Y.R.Su, H.Xie, C.Liu: Chem. Eng. J.291 (2016) 39. 10.1016/j.cej.2016.01.032Search in Google Scholar
[31] Q.P.Lu, Y.F.Yu, Q.L.Ma, B.Chen, H.Zhang: Adv. Mater.28 (2016) 1917. 10.1002/adma.201503270Search in Google Scholar PubMed
[32] X.Zhang, Y.Liu, Z.H.Kang: ACS Appl. Mater. Interfaces6 (2014) 4480. 10.1021/am500234vSearch in Google Scholar PubMed
[33] Y.M.Liang, N.Guo, L.L.Li, R.Q.Li, G.J.Ji, S.C.Gan: Appl. Surf. Sci.332 (2015) 32. 10.1016/j.apsusc.2015.01.116Search in Google Scholar
[34] C.W.Cheng, W.N.Ren, H.F.Zhang: Nano Energy5 (2014) 132. 10.1016/j.nanoen.2014.03.002Search in Google Scholar
[35] S.K.Karuturi, J.S.Luo, C.W.Cheng, L.J.Liu, L.T.Su, A.I.Tok, H.J.Fan: Adv. Mater.24 (2012) 4157. PMid:22641295; 10.1002/adma.201104428Search in Google Scholar PubMed
[36] G.P.Awasthi, S.P.Adhikari, S.Ko, H.J.Kim, C.H.Park, C.S.Kim: J. Alloys Compd.682 (2016) 208. 10.1016/j.jallcom.2016.04.267Search in Google Scholar
[37] W.N.Ren, H.F.Zhang, D.Z.Kong, B.Liu, Y.P.Yang, C.W.Cheng: Phys. Chem. Chem. Phys.16 (2014) 22953. PMid:25250640; 10.1039/c4cp03043eSearch in Google Scholar PubMed
[38] H.F.Zhang, D.Zhang, X.M.Qin, C.W.Cheng: J. Phys. Chem.C 119 (2015) 27875. 10.1021/acs.jpcc.5b07533Search in Google Scholar
[39] H.Z.Yao, J.W.Ma, Y.N.Mu, Y.L.Chen, S.Su, P.Lv, X.L.Zhang, D.Ding, W.Y.Fu, H.B.Yang: RSC Adv.5 (2015) 6429. 10.1039/c4ra12245cSearch in Google Scholar
[40] D.Fattakhova-Rohlfing, A.Zaleska, T.Bein: Chem. Rev.114 (2014) 9487. PMid:25137128; 10.1021/cr500201cSearch in Google Scholar PubMed
[41] Z.M.Bai, X.Q.Yan, Y.Li, Z.Kang, S.Y.Cao, Y.Zhang: Adv. Energy Mater.6 (2016) 1501459. 10.1002/aenm.201501459Search in Google Scholar
[42] C.-H.Han, S.-D.Han, J.Gwak, S.P.Khatkar: Mater. Lett.61 (2007) 1701. 10.1016/j.matlet.2006.07.114Search in Google Scholar
[43] B.Liu, E.S.Aydil: J. Am. Chem. Soc.131 (2009) 3985. 10.1021/ja8078972Search in Google Scholar PubMed
[44] P.Kubelka, F.Munk: Zeit. Techn. Physik12 (1931) 593.Search in Google Scholar
[45] M.Radecka, A.Wnuk, A.Trenczek-Zajac, K.Schneider, K.Zakrzewska: Int. J. Hydrogen Energy40 (2015) 841. 10.1016/j.ijhydene.2014.09.154Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic solidification of highly undercooled dilute alloys
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 2 – corrosion
- Thermodynamic properties of cerium molybdate
- A new approach to reduce springback in sheet metal bending using digital image correlation
- Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
- Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
- A fractal analysis for the microstructures of β-SiC films
- Synthesis of La2(Zr0.7Ce0.3)2O7 nanopowder using a simple chemical precipitation method and heat treatment at high temperature
- Optimized microstructure with alumina micropowder and its effects on properties of phosphate-bonded castables
- Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
- 3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
- Short Communications
- Investigation of Al2O3/TiB2 ceramic cutting tool materials with the addition of core–shell structured Ni–B coated CaF2
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic solidification of highly undercooled dilute alloys
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 2 – corrosion
- Thermodynamic properties of cerium molybdate
- A new approach to reduce springback in sheet metal bending using digital image correlation
- Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
- Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
- A fractal analysis for the microstructures of β-SiC films
- Synthesis of La2(Zr0.7Ce0.3)2O7 nanopowder using a simple chemical precipitation method and heat treatment at high temperature
- Optimized microstructure with alumina micropowder and its effects on properties of phosphate-bonded castables
- Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
- 3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
- Short Communications
- Investigation of Al2O3/TiB2 ceramic cutting tool materials with the addition of core–shell structured Ni–B coated CaF2
- DGM News
- DGM News