A fractal analysis for the microstructures of β-SiC films
-
Bin Li
, Zhiyong Chen and Erzhou Ren
Abstract
Fractal theory is widely used to analyze the topography of surfaces; however, the relationship and characteristics of fractal dimension and microstructures of β-SiC films have not been reported. Using scanning electron microscopy and computer analysis, the microstructures of β-SiC films were evaluated; the films were prepared on AlN substrates by laser chemical vapor deposition using a diode laser and hydrido polycarbosilane as the precursor at different vacuum levels. The effect of vacuum level on the microstructure of β-SiC films was evaluated. The results show that the microstructures of β-SiC films exhibit the characteristics of fractals. Using the box counting method, the fractal dimensions of β-SiC films were calculated to be about 1.94–2.14, providing more fractal identification in evaluating the performance of films.
References
[1] B.B.Mandelbrot: The fractal geometry of nature, W.H. Freeman (1983). 10.1119/1.13295Search in Google Scholar
[2] P.Sahoo, T.Barman, J.P.Davim: Fractal analysis in machining, Springer Science & Business Media (2011). 10.1007/978-3-642-17922-8Search in Google Scholar
[3] D.Dallaeva, Ş.Ţălu, S.Stach, P.Škarvada, P.Tománek, L.Grmela: Appl. Surf. Sci.312 (2014) 81–86. 10.1016/j.apsusc.2014.05.086Search in Google Scholar
[4] P.Sahoo, S.K. RoyChowdhury: Wear253 (2002) 924–934. 10.1016/s0043-1648(02)00243-0Search in Google Scholar
[5] R.P.Yadav, M.Kumar, A.K.Mittal, A.C.Pandey: Chaos An Inter. J. Nonlinear Sci.25 (2015) 1759–1155. PMid:26328566; 10.1063/1.4928695Search in Google Scholar PubMed
[6] M.Hasegawa, J.Liu, K.Okuda, M.Nunobiki: Wear192 (1996) 40–45. 10.1016/0043-1648(95)06768-XSearch in Google Scholar
[7] I.A.El-Sonbaty, U.A.Khashaba, A.I.Selmy, A.I.Ali: J. Mater. Process. Technol.200 (2008) 271–278. 10.1016/j.jmatprotec.2007.09.006Search in Google Scholar
[8] X.Yin, K.Komvopoulos: Int. J. Solids. Struct.47 (2010) 912–921. 10.1016/j.ijsolstr.2009.12.003Search in Google Scholar
[9] P.Xu, B.Yu: Adv. Water Resour.31 (2008) 74–81. 10.1016/j.advwatres.2007.06.003Search in Google Scholar
[10] H.Zahouani, R.Vargiolu, J.L.Loubet: Math. Comput. Model.28 (4–8) (1998) 517–534. 10.1016/s0895-7177(98)00139-3Search in Google Scholar
[11] B.Li: Int. J. Refract. Met. Hard Mater.42 (2014) 221–227. 10.1016/j.ijrmhm.2013.09.009Search in Google Scholar
[12] Y.Yamamoto, T.Karasawa, Y.Murakami, S.Takemoto, D.Yonetsu, K.Noborio, S.Konishi: Fusion Eng. Des.89 (2014) 1392–1396. 10.1016/j.fusengdes.2014.01.039Search in Google Scholar
[13] V.V.Kozlovski, A.A.Lebedev, V.N.Lomasov, E.V.Bogdanova, N.V.Seredova: Semiconductors.48 (2014) 1006–1009. 10.1134/s1063782614080156Search in Google Scholar
[14] Ö.Danielsson, P.Sukkaew, L.Ojamae, O.Kordina, E.Janzen: Theor. Chem. Acc.132 (2013) 1–12. 10.1007/s00214-013-1398-9Search in Google Scholar
[15] M.Zielinski, M.Portail, T.Chassagne, S.Juillaguet, H.Peyre: J. Cryst. Growth310 (2008) 3174–3182. 10.1016/j.jcrysgro.2008.03.022Search in Google Scholar
[16] H.Suzuki, H.Araki, M.Tosa, T.Noda: J. Cryst. Growth294 (2006) 464–468. 10.1016/j.jcrysgro.2006.07.003Search in Google Scholar
[17] H.J.Hei, J.Ma, X.J.Li, S.W.Yu, B.Tang, Y.Y.Shen, W.Z.Tang: Surf. Coat. Technol.261 (2015) 272–277. 10.1016/j.surfcoat.2014.11.019Search in Google Scholar
[18] S.Rajasekhara, B.NeunerIII, C.Zorman, N.Jegenyes, G.Ferro, G.Shvets, P.Ferreira, D.Kovar: Appl. Phys. Lett.98 (2011) 191904. 10.1063/1.3585098Search in Google Scholar
[19] J.-Y.Seo, S.-Y.Yoon, K.Niihara, K.H.Kim: Thin Solid Films406 (2002) 138–144. 10.1016/s0040-6090(02)00061-5Search in Google Scholar
[20] K.Abe, Y.Nagasaka, T.Kida, T.Yamakami, R.Hayashibe, K.Kamimura: Thin Solid Films516 (2008) 637–640. 10.1016/j.tsf.2007.06.199Search in Google Scholar
[21] S.Zhang, Q.F.Xu, R.Tu, T.Goto, L.M.Zhang: J. Am. Ceram. Soc.98 (2015) 236–241. 10.1111/jace.13248Search in Google Scholar
[22] S.Zhang, Q.F.Xu, R.Tu, T.Goto, L.M.Zhang: J. Am. Ceram. Soc.97 (3) (2014) 952–958. 10.1111/jace.12706Search in Google Scholar
[23] M.Gao, A.Ito, T.Goto: Appl. Surf. Sci.340 (2015) 160–165. 10.1016/j.apsusc.2015.02.196Search in Google Scholar
[24] D.Severin, S.Dörsch: Wear249 (2001) 771–779. 10.1016/S0043-1648(01)00806-7Search in Google Scholar
[25] A.G.Kokkalis, O.K.Panagouli: Chaos, Solitons Fractals9 (1998) 1891–1899. 10.1016/s0960-0779(97)00138-0Search in Google Scholar
[26] M.Chen, Q.Pang, J.Wang, K.Cheng: Int. J. Mach. Tools Manuf.48 (2008) 905–913. 10.1016/j.ijmachtools.2007.11.002Search in Google Scholar
[27] J.Alcock, O. ToftS⊘rensen, S.Jensen, P.Kjeldsteen: Wear194 (1996) 228–237. 10.1016/0043-1648(95)06898-8Search in Google Scholar
[28] Kavyashree, R.K.Pandey, R.P.Yadav, M.Kumar, H.P.Bhasker, A.K.Mittal, A.C.Pandey, S.N.Pandey: Appl. Surf. Sci.466 (2019) 780–786. 10.1016/j.apsusc.2018.10.075Search in Google Scholar
[29] A.Lakhtakia: Colloid & Polymer Science268 (1990) 399–400. 10.1007/BF01411683Search in Google Scholar
[30] Y.Abdelaziz, S.Benkheira, T.Rikioui, A.Mekkaoui: Appl. Math. Model.34 (2010) 4031–4039. 10.1016/j.apm.2010.03.035Search in Google Scholar
[31] C.X.Liu, Y.Q.Yang, X.Luo: Comp. Mater. Sci.50 (2011) 2338–2346. 10.1016/j.commatsci.2011.03.008Search in Google Scholar
[32] I.V.Kityk, A.Kassiba, K.Tuesu, C.Charpentier, Y.Ling, M.Makowska-Janusik: Mater. Sci. Eng.B 77 (2000) 147–158. 10.1016/s0921-5107(00)00466-9Search in Google Scholar
[33] T.Nychyporuk, V.Lysenko, D.Barbier: Phys. Rev.B 71 (2005) 115402. 10.1103/PhysRevB.71.115402Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic solidification of highly undercooled dilute alloys
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 2 – corrosion
- Thermodynamic properties of cerium molybdate
- A new approach to reduce springback in sheet metal bending using digital image correlation
- Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
- Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
- A fractal analysis for the microstructures of β-SiC films
- Synthesis of La2(Zr0.7Ce0.3)2O7 nanopowder using a simple chemical precipitation method and heat treatment at high temperature
- Optimized microstructure with alumina micropowder and its effects on properties of phosphate-bonded castables
- Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
- 3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
- Short Communications
- Investigation of Al2O3/TiB2 ceramic cutting tool materials with the addition of core–shell structured Ni–B coated CaF2
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic solidification of highly undercooled dilute alloys
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 2 – corrosion
- Thermodynamic properties of cerium molybdate
- A new approach to reduce springback in sheet metal bending using digital image correlation
- Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
- Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
- A fractal analysis for the microstructures of β-SiC films
- Synthesis of La2(Zr0.7Ce0.3)2O7 nanopowder using a simple chemical precipitation method and heat treatment at high temperature
- Optimized microstructure with alumina micropowder and its effects on properties of phosphate-bonded castables
- Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
- 3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
- Short Communications
- Investigation of Al2O3/TiB2 ceramic cutting tool materials with the addition of core–shell structured Ni–B coated CaF2
- DGM News
- DGM News