Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
-
Taotao Ai
, Qunfei Niu , Zhifeng Deng , Xinqiang Yuan and Wenhu Li
Abstract
Laminated sheets with Ti2AlC/TiAl composite layers synthesized from the Ti–Al–TiC system and TC4 titanium alloy as the toughening layer were fabricated by spark plasma sintering. Their phase composition and microstructure were analyzed and flexural strength and fracture toughness measured. The composite layers mainly comprised Ti2AlC, TiC, TiAl, and Ti3Al phases. The flexural strength and fracture toughness of the sheets perpendicular to the laminated direction were 455.74 MPa and 21.65 MPa · m1/2, respectively. The TC4 layers provided a strengthening–toughening effect by changing the crack propagation model and weakening the fracture energy. Ti2AlC particles provided a strengthening effect. The synergistic effect of the two components enhanced the mechanical properties of these TiAl-based laminated composite sheets.
References
[1] T.Noda: Intermetallics6 (1998) 709. 10.1016/S0966-9795(98)00060-0Search in Google Scholar
[2] R.Ramaseshan, A.Kakitsuji, S.K.Seshadri, N.G.Nair, H.Mabuchi, H.Tsuda, T.Matsui, K.Morii: Intermetallics7 (1999) 571. 10.1016/S0966-9795(98)00069-7Search in Google Scholar
[3] T.T.Ai, F.Liu, Q.Yu, X.M.Feng, Y.T.Zhang, W.H.Li: Int. J. Mater. Res.105 (2014) 1118. 10.3139/146.111119Search in Google Scholar
[4] C.Y.Teng, N.Zhou, Y.Wang, D.S.Xu, A.Du, Y.H.Wen, R.Yang: Acta Mater.60 (2012) 6372. 10.1016/j.actamat.2012.08.016Search in Google Scholar
[5] Y.Fei, T.T.Ai, Q.F.Niu, W.H.Li, X.Q.Yuan, R.Jing, H.F.Dong: Mater.10 (2017) 1175. PMid:29084177; 10.3390/ma10101175Search in Google Scholar PubMed PubMed Central
[6] H.Wu, G.H.Fan, B.C.Jin, L.Geng, X.P.Cui, M.Huang, X.C.Li, S.Nutt: Mater. Sci. Eng.A 670 (2016) 233. 10.1016/j.msea.2016.06.026Search in Google Scholar
[7] C.Wu, Y.K.Li, S.H.Xie: J. Alloys Compd.733 (2018) 1. 10.1016/j.jallcom.2017.10.270Search in Google Scholar
[8] S.H.Qin, X.P.Cui, Z.Tian, L.Geng, B.X.Liu, J.Zhang, J.F.Chen: J. Alloys Compd.700 (2017) 122. 10.1016/j.jallcom.2017.01.047Search in Google Scholar
[9] T.T.Ai: Ceram. Int.38 (2012) 2537. 10.1016/j.ceramint.2011.10.091Search in Google Scholar
[10] T.T.Ai, F.Liu, X.M.Feng, Q.Yu, N.Yu, M.M.Ruan, X.Q.Yuan, Y.T.Zhang: Mater. Sci. Eng.A 610 (2014) 297. 10.1016/j.msea.2014.05.054Search in Google Scholar
[11] T.Lapauw, K.Vanmeensel, K.Lambrinou, J.Vleugels: Scr. Mater.111 (2016) 98. 10.1016/j.scriptamat.2015.08.023Search in Google Scholar
[12] H.F.Sun, X.W.Li, P.Zhang, W.B.Fang: Mater. Sci. Eng.A 611 (2014) 257. 10.1016/j.msea.2014.06.009Search in Google Scholar
[13] T.T.Ai, Q.Yu, W.H.Li: Adv. Appl. Ceram.115 (2016) 190. 10.1080/17436753.2015.1104054Search in Google Scholar
[14] F.Yang, F.T.Kong, Y.Y.Chen, S.L.Xiao: J. Alloys Compd.496 (2010) 462. 10.1016/j.jallcom.2010.02.077Search in Google Scholar
[15] T.T.Ai, N.Yu, X.M.Feng, N.S.Xie, W.H.Li, P.J.Xia: Met. Mater. Int.21 (2015) 179. 10.1007/S12540-015-1022-8Search in Google Scholar
[16] X.J.Song, H.Z.Cui, N.Hou, N.Wei, Y.Han, J.Tian, Q.Song: Ceram. Int.42 (2016) 13586. 10.1016/j.ceramint.2016.05.152Search in Google Scholar
[17] S.L.Shu, F.Qiu, S.J.Lü, S.B.Jin, Q.C.Jiang: Mater. Sci. Eng.A 539 (2012) 344. 10.1016/j.msea.2012.01.108Search in Google Scholar
[18] C.H.Yang, F.Wang, T.T.Ai, J.F.Zhu: Ceram. Int.40 (2014) 8165. 10.1016/j.ceramint.2014.01.012Search in Google Scholar
[19] T.T.Ai, F.Wang, X.M.Feng, M.M.Ruan: Ceram. Int.40 (2014) 9947. 10.1016/j.ceramint.2014.02.092Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic solidification of highly undercooled dilute alloys
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 2 – corrosion
- Thermodynamic properties of cerium molybdate
- A new approach to reduce springback in sheet metal bending using digital image correlation
- Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
- Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
- A fractal analysis for the microstructures of β-SiC films
- Synthesis of La2(Zr0.7Ce0.3)2O7 nanopowder using a simple chemical precipitation method and heat treatment at high temperature
- Optimized microstructure with alumina micropowder and its effects on properties of phosphate-bonded castables
- Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
- 3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
- Short Communications
- Investigation of Al2O3/TiB2 ceramic cutting tool materials with the addition of core–shell structured Ni–B coated CaF2
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic solidification of highly undercooled dilute alloys
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 2 – corrosion
- Thermodynamic properties of cerium molybdate
- A new approach to reduce springback in sheet metal bending using digital image correlation
- Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
- Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
- A fractal analysis for the microstructures of β-SiC films
- Synthesis of La2(Zr0.7Ce0.3)2O7 nanopowder using a simple chemical precipitation method and heat treatment at high temperature
- Optimized microstructure with alumina micropowder and its effects on properties of phosphate-bonded castables
- Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
- 3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
- Short Communications
- Investigation of Al2O3/TiB2 ceramic cutting tool materials with the addition of core–shell structured Ni–B coated CaF2
- DGM News
- DGM News