Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
-
Chih-Ting Wu
, Hui-Yun Bor , Kung-Hui Liu and Sheng-Long Lee
Abstract
This study investigates how minor La and Ce additions affect the microstructure and mechanical properties of A201 alloy. The results indicate that adding 0.2 wt.% La or Ce to A201 alloys could refine the grain size and led to a rise in the temperature of exothermic peak of Ω and θ' precipitates. In addition, the presence of La-rich phase or Ce-rich phase consumed the quantities of Cu atoms in the Al matrices during solidification. Neither of the phases could be dissolved during solution heat treatment, reducing the precipitation of Ω and θ' phases in A201 alloy after artificial aging heat treatment. The lower volume fraction of the Ω and θ' strengthening phases led to a decrease in hardness and tensile properties but an increase in ductility of the La-containing or Ce-containing A201 alloy.
References
[1] J.E.Hatch: Aluminum: Properties and Physical Metallurgy, American Society for Metals, Ohio (1984) 322–338.Search in Google Scholar
[2] J.R.Davis: ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International, OH (1993) 706–707.Search in Google Scholar
[3] Y.Zhou, Z.Liu, S.Bai, P.Ying, L.Lin: Mater. Charact.123 (2017) 1. 10.1016/j.matchar.2016.11.008Search in Google Scholar
[4] C.H.Chang, S.L.Lee, T.Y.Hsu, J.C.Lin: Metall. Mater. Trans.A 38 (2007) 2832. 10.1007/s11661-007-9332-1Search in Google Scholar
[5] S.P.Ringer, K.Hono, I.J.Polmear, T.Sakurai: Acta Mater.44 (1996) 1883. 10.1016/1359-6454(95)00314-2Search in Google Scholar
[6] Y.C.Tsai, C.Y.Chou, R.R.Jeng, S.L.Lee, C.K.Lin: Int. J. Cast Metal Res.24 (2011) 83. 10.1179/136404610X12816241546456Search in Google Scholar
[7] J.H.Jun, J.M.Kim, K.D.Seong, K.T.Kim, W.J.Jung: Mater. Sci. Forum475 (2005) 441. 10.1016/S0925-8388(02)01162-3Search in Google Scholar
[8] D.H.Xiao, J.N.Wang, D.Y.Ding, H.L.Yang: J. Alloys Compd.352 (2003) 84. 10.1016/S0925-8388(02)01162-3Search in Google Scholar
[9] X.M.Zhang, W.T.Wang, M.A.Chen: T. Nonferr. Metal Soc.20 (2010) 727. 10.1016/S1003-6326(09)60205-3Search in Google Scholar
[10] D.Yao, F.Qiu, Q.Jiang, Y.Li, L.Arnberg: Int. J. Metalcast.7 (2013) 49. 10.1007/BF03355544Search in Google Scholar
[11] D.M.Yao, W.G.Zhao, H.L.Zhao, F.Qiu: Scr. Mater.61 (2009) 1153. 10.1016/j.scriptamat.2009.09.007Search in Google Scholar
[12] S.Bai, Z.Y.Liu, Y.T.Li, Y.H.Hou: Mater. Sci. Eng.A 527 (2010) 1806. 10.1016/j.msea.2009.11.011Search in Google Scholar
[13] W.G.Zhao, H.Y.Wang, J.G.Wang: J. Mater. Res.23 (2008) 1076. 10.1557/jmr.2008.0110Search in Google Scholar
[14] X.Huang, H.Yan: J. Wuhan. Univ. Technol.28 (2013) 202. 10.1007/s11595-013-0665-xSearch in Google Scholar
[15] D.M.Yao, Y.M.Xia, F.Qiu, Q.C.Jiang: Mat. Sci. Eng.A 528 (2011) 1463. 10.1016/j.msea.2010.10.046Search in Google Scholar
[16] S.Abd El Majid, M.Bamberger, A.Katsman, in: E.Williams, (Ed.), Light Metals, (2016) 127. Springer. 10.1002/9781119274780.ch22Search in Google Scholar
[17] E.A.Loria: The Minerals, Metals & Materials Society, PA (1997) 521–530.Search in Google Scholar
[18] M.Vlacha, I.Stulíková, B.Smola, H.Císarová, J.Piešová, S.Daniš, R.Gemma, J.Málek, D.Tanprayoon, V.Neubert: Int. J. Mater. Res.103 (2012) 814. 10.3139/146.110712Search in Google Scholar
[19] C.T.Wu, S.L.Lee, M.H.Hsieh, J.C.Lin: Mater. Charact.61 (2010) 1074. 10.1016/j.matchar.2010.06.022Search in Google Scholar
[20] S.Abis, P.Mengucci, G.Riontino: Philos. Mag.B67 (1993) 465. 10.1080/13642819308207686Search in Google Scholar
[21] C.H.Chang, S.L.Lee, J.C.Lin, R.R.Jeng: Mater. T. JIM46 (2005) 236. 10.2320/matertrans.46.236Search in Google Scholar
[22] K.Stan, L.Litynska-Dobrzynska, P.Ochin, A.Wierzbicka-Miernik, A.Góral, J.Wojewoda-Budka: Arch. Metall. Mater.58 (2013) 314. 10.2478/v10172-012-0195-0Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic solidification of highly undercooled dilute alloys
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 2 – corrosion
- Thermodynamic properties of cerium molybdate
- A new approach to reduce springback in sheet metal bending using digital image correlation
- Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
- Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
- A fractal analysis for the microstructures of β-SiC films
- Synthesis of La2(Zr0.7Ce0.3)2O7 nanopowder using a simple chemical precipitation method and heat treatment at high temperature
- Optimized microstructure with alumina micropowder and its effects on properties of phosphate-bonded castables
- Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
- 3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
- Short Communications
- Investigation of Al2O3/TiB2 ceramic cutting tool materials with the addition of core–shell structured Ni–B coated CaF2
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic solidification of highly undercooled dilute alloys
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 2 – corrosion
- Thermodynamic properties of cerium molybdate
- A new approach to reduce springback in sheet metal bending using digital image correlation
- Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
- Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
- A fractal analysis for the microstructures of β-SiC films
- Synthesis of La2(Zr0.7Ce0.3)2O7 nanopowder using a simple chemical precipitation method and heat treatment at high temperature
- Optimized microstructure with alumina micropowder and its effects on properties of phosphate-bonded castables
- Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
- 3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
- Short Communications
- Investigation of Al2O3/TiB2 ceramic cutting tool materials with the addition of core–shell structured Ni–B coated CaF2
- DGM News
- DGM News