Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
-
Mahsa Navidirad
, Babak Raissi , Reza Riahifar , Maziar Sahba Yaghmaee , Fatemeh Taati Asil and Asghar Kazemzadeh
Abstract
The electrokinetic behavior of TiO2–WO3 nanoparticles while applying non-uniform AC electric fields at a frequency of 10 kHz was investigated using planar parallel electrodes. For this purpose, WO3 and TiO2 nanoparticles, which exhibited a different response to the applied electric field, were deposited simultaneously at 10 kHz. Characterization of the obtained patterns by optical and scanning electron microscopy revealed that the TiO2 nanoparticles, which were unable to enter the gap, moved toward it and got deposited there in the presence of WO3 nanoparticles. Hence, a composite layer consisting of TiO2 and WO3 nanoparticles was formed in the gap. A hypothesis for the change in the deposition and electric behavior of TiO2 nanoparticles is presented in this paper using the multi-shell model. Furthermore, a possible method for the fabrication of a TiO2–WO3based gas sensor has been provided.
References
[1] S.Mahmoodi, B.Raissi, E.Marzbanrad, N.Shojayi, A.Aghaei, C.Zamani: Procedia. Chem.1 (2009) 947. 10.1016/j.proche.2009.07.236Search in Google Scholar
[2] N.G.Green, H.Morgan: J. Phys. Chem.B 103 (1999) 41. 10.1021/jp9829849Search in Google Scholar
[3] A.Ramos, H.Morgan, N.G.Green, A.Castellanos: J. Phys. D: Appl. Phys.31 (1998) 2338. 10.1088/0022-3727/31/18/021Search in Google Scholar
[4] D.Kumar, I.Kumar, P.Chaturvedi, A.Chouksey, R.Tandon, P.Chaudhury: Mater. Chem. Phys.177 (2016) 276. 10.1016/j.matchemphys.2016.04.028Search in Google Scholar
[5] Z.Chen, Y.Yang, F.Chen, Q.Qing, Z.Wu, Z.Liu: J. Phys. Chem.B 109 (2005) 11420. 10.1021/jp051848iSearch in Google Scholar PubMed
[6] P.Modarres, M.Tabrizian: Sens. Actuators. B Chem.252 (2017) 391. 10.1016/j.snb.2017.05.144Search in Google Scholar
[7] H.Ohshima: Curr. Opin. Colloid Interface Sci.18 (2013) 73. 10.1016/j.cocis.2013.02.003Search in Google Scholar
[8] J.Esmaeilzadeh, S.Ghashghaie, B.Raissi, E.Marzbanrad, C.Zamani, R.Riahifar: Ceram. Int.38 (2012) 5613. DOI: doi.org/10.1016/j.ceramint.2012.04.002. 10.1016/j.ceramint.2012.04.002Search in Google Scholar
[9] J.Esmaeilzadeh, E.Marzbanrad, C.Zamani, B.Raissi: Sens. Actuators. B Chem.161 (2012) 401. 10.1016/j.snb.2011.10.051Search in Google Scholar
[10] P.S.Khiabani, E.Marzbanrad, C.Zamani, R.Riahifar, B.Raissi: Sens. Actuators. B Chem.166 (2012) 128. DOI: doi.org/10.1016/j.snb.2012.01.028. 10.1016/j.snb.2012.01.028Search in Google Scholar
[11] R.Riahifar, B.Raissi, E.Marzbanrad, C.Zamani: J. Mater. Sci. – Mater. Electron.22 (2011) 40. 10.1007/s10854-010-0079-xSearch in Google Scholar
[12] R.Riahifar, B.Raissi, E.Marzbanrad, C.Zamani: Key Eng. Mater.507 (2012) 41. 10.4028/www.scientific.net/KEM.507.41Search in Google Scholar
[13] E.K.Heidari, C.Zamani, E.Marzbanrad, B.Raissi, S.Nazarpour: Sens. Actuators. B Chem.146 (2010) 165. 10.1016/j.snb.2010.01.073Search in Google Scholar
[14] B.Raissi, R.Riahifar, M. SahbaYaghmaee, F.Taati-Asil, A.Aghaei, S.Chatrnoor, A.Taghadossi, R.Irankhah, M.Karimi: Int. J. Mater. Res.109 (2018) 1. 10.3139/146.111603Search in Google Scholar
[15] K.Raju, H.-W.Yu, D.-H.Yoon: Ceram. Int.40 (2014) 12609. 10.1016/j.ceramint.2014.04.098Search in Google Scholar
[16] L.Amaral, P.M.Vilarinho, A.M.Senos: Mater. Chem. Phys.149 (2015) 445. 10.1016/j.matchemphys.2014.10.043Search in Google Scholar
[17] R.Kretschmer, W.Fritzsche: Langmuir20 (2004) 11797. PMid:15595813; 10.1021/la0482352Search in Google Scholar PubMed
[18] R.Park, K.Kaler, T.Jones: J. Phys. Chem.97 (1993) 4745. 10.1021/j100120a600Search in Google Scholar
[19] J.Kadaksham, P.Singh, N.Aubry: Mech. Res. Commun.33 (2006) 108. 10.1016/j.mechrescom.2005.05.017Search in Google Scholar
[20] T.B.Jones: Electromechanics of particles, Cambridge University Press, (2005).Search in Google Scholar
[21] M.Rahaman: Ceramic processing, CRC press, (2006).Search in Google Scholar
[22] H.Morgan, N.G.Green: AC electrokinetics, Research Studies Press, (2003).Search in Google Scholar
[23] M.Navidirad, B.Raissi, R.Riahifar, M.S.Yaghmaee, A.Kazemzadeh: J. Mater. Sci. – Mater. Electron.25 (2014) 5041. 10.1007/s10854-014-2269-4Search in Google Scholar
[24] W.M.Haynes: CRC handbook of chemistry and physics, CRC press, (2014).10.1201/b17118Search in Google Scholar
[25] F.Fahrenberger, Z.Xu, C.Holm: J. Chem. Phys.141 (2014) 064902. PMid:25134594; 10.1063/1.4892413Search in Google Scholar PubMed
[26] V.Giner, M.Sancho, R.Lee, G.Martinez, R.Pethig: J. Phys. D: Appl. Phys.32 (1999) 1182. 10.1088/0022-3727/32/10/316Search in Google Scholar
[27] U.Aschauer, O.Burgos-Montes, R.Moreno, P.Bowen: J. Dispersion Sci. Technol.32 (2011) 470. 10.1080/01932691003756738Search in Google Scholar
[28] R.Riahifar, E.Marzbanrad, B.Raissi, C.Zamani, M.Kazemzad, A.Aghaei: Mater. Lett.65 (2011) 632. address:. 10.1016/j.matlet.2010.08.029CorrespondenceSearch in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic solidification of highly undercooled dilute alloys
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 2 – corrosion
- Thermodynamic properties of cerium molybdate
- A new approach to reduce springback in sheet metal bending using digital image correlation
- Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
- Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
- A fractal analysis for the microstructures of β-SiC films
- Synthesis of La2(Zr0.7Ce0.3)2O7 nanopowder using a simple chemical precipitation method and heat treatment at high temperature
- Optimized microstructure with alumina micropowder and its effects on properties of phosphate-bonded castables
- Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
- 3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
- Short Communications
- Investigation of Al2O3/TiB2 ceramic cutting tool materials with the addition of core–shell structured Ni–B coated CaF2
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic solidification of highly undercooled dilute alloys
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 2 – corrosion
- Thermodynamic properties of cerium molybdate
- A new approach to reduce springback in sheet metal bending using digital image correlation
- Effects of minor La and Ce additions on microstructure and mechanical properties of A201 alloy
- Strengthening and toughening of laminated TiAl composite sheets by titanium alloy layers and carbide particles
- A fractal analysis for the microstructures of β-SiC films
- Synthesis of La2(Zr0.7Ce0.3)2O7 nanopowder using a simple chemical precipitation method and heat treatment at high temperature
- Optimized microstructure with alumina micropowder and its effects on properties of phosphate-bonded castables
- Co-deposition and electrokinetic behavior of TiO2–WO3 nanoparticles under non-uniform AC field
- 3D nanoflower-structured TiO2 photoanode for efficient photoelectrochemical water splitting
- Short Communications
- Investigation of Al2O3/TiB2 ceramic cutting tool materials with the addition of core–shell structured Ni–B coated CaF2
- DGM News
- DGM News