Home Technology Thermodynamic properties of cerium molybdate
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic properties of cerium molybdate

  • Ai Nozaki , Masao Morishita , Yoshiki Kinoshita and Hiroaki Yamamoto
Published/Copyright: August 7, 2019

Abstract

Ce2(MoO4)3 is a harmful phase formed in waste glasses from nuclear fuel. To determine the third-law entropy of Ce2(MoO4)3, the isobaric heat capacities, Cp,m°, were measured with a relaxation-method instrument at 2–300 K. The standard entropy, Δ0TSm°, at 298.15 K was determined with fitting functions including the Debye–Einstein formula including electronic and spin-wave terms. The Néel temperature, TN, was estimated by extrapolation from the magnetic term in this fitting function. The phase stability of Ce2(MoO4)3 is discussed in terms of its standard Gibbs energy of formation, ΔfGm°, which was derived by combining the values for Sm°determined in this study with reference data for the standard enthalpy of formation, ΔfHm°.


Correspondence address, Dr. Ai Nozaki, Department of Chemical Engineering and Materials Science, University of Hyogo, 2167 Shosha, Himeji, 6771-2201, Japan, Tel: +81-79-267-4005, e-mail:

References

[1] M.E.Ragoussi, S.Brassinnes: Radiochim. Acta103 (2015) 679685. 10.1515/ract-2015-2392Search in Google Scholar

[2] H.Gamsjäger, J.Bugajski, T.Gajda, R.J.Lemire, W.Preis: Chemical Thermodynamics of Nickel, Nuclear Energy Agency, Organization for Economic Co-operation, Develpopment, Eds., Vol. 6, Chemical Thermodynamics, North Holland Elsevier Science Publisher B.V., Amsterdam (2005) 44.Search in Google Scholar

[3] M.Morishita, H.Houshiyama: Mater. Trans.56 (2015) 545549. 10.2320/matertrans.M2014470Search in Google Scholar

[4] H.Gamsjäger, M.Morishita: Pure Appl. Chem.87 (2015) 461476. 10.1515/pac-2014-1105Search in Google Scholar

[5] M.Morishita, M.Fukushima, H.Houshiyama: Mater. Trans.57 (2016) 4651. 10.2320/matertrans.M2015189Search in Google Scholar

[6] E.Gamsjäger, M.Morishita, H.Gamsjäger: Monatsh. Chem. Chem. Mon.147 (2016) 263267. 10.1007/s00706-015-1588-3Search in Google Scholar

[7] Y.Kinoshita, M.Morishita, A.Nozaki, H.Yamamoto: J. Jpn. Ins. Metal.81 (2017) 485493. 10.2320/jinstmet.JAW201703Search in Google Scholar

[8] M.Morishita, H.Houshiyama, Y.Kinoshita, A.Nozaki, H.Yamamoto: Mater. Trans58 (2017) 868. 10.2320/matertrans.M2017005Search in Google Scholar

[9] M.Morishita, Y.Kinoshita, H.Houshiyama, A.Nozaki, H.Yamamoto: J. Chem. Thermodyn.114 (2017) 3043. 10.1016/j.jct.2017.05.021Search in Google Scholar

[10] M.Morishita, Y.Kinoshita, H.Tanaka, A.Nozaki, H.Yamamoto: Monatsh. Chem. Chem. Mon.149 (2018) 341356. 10.1007/s00706-017-2128-0Search in Google Scholar

[11] Y.Kinoshita, M.Morishita, A.Nozaki, H.Yamamoto: Mater. Trans.60 (2018) 111120. 10.2320/matertrans.M2018305Search in Google Scholar

[12] M.Morishita, Y.Kinoshita, A.Nozaki, H.Yamamoto: Appl. Geochem.98 (2018) 310320. 10.1016/j.apgeochem.2018.08.023Search in Google Scholar

[13] M.Morishita, A.Navrotsky, M.C.Wilding: J. Am. Ceram. Soc.87 (2004) 15501555. 10.1111/j.1551-2916.2004.01550.xSearch in Google Scholar

[14] W.Haller, D.H.Blackburn, F.E.Wagstaff, R.J.Charles: J. Am. Ceram. Soc.53 (1970) 3439. 10.1111/j.1151-2916.1970.tb11995.xSearch in Google Scholar

[15] Y.Kawamoto, K.Clemens, M.Tomozawa: J. Am. Ceram. Soc.64 (1981) 292296. 10.1111/j.1151-2916.1981.tb09605.xSearch in Google Scholar

[16] H.Wakabayashi, S.Fukumoto, H.Yanaka, R.Terai: Yogyo-Kyokai-Shi95 (1987) 486. 10.2109/jcersj1950.95.1101_486Search in Google Scholar

[17] N.C.Hyatt, R.J.Short, R.J.Hand, W.E.Lee: Ceram. Trans.168 (2005) 179187.Search in Google Scholar

[18] M.Morishita, K.Koyama: Z. Metallkd.94 (2003) 967971. 10.3139/146.030967Search in Google Scholar

[19] M.Morishita, K.Koyama, K.Tsuboki: Z. Metallkd.95 (2004) 708712. 10.3139/146.018007Search in Google Scholar

[20] M.Morishita, K.Koyama, S.Shikata, M.Kusumoto: Metallkd. Mater. Trans.B 35 (2004) 891895. 10.1007/s11663-004-0083-8Search in Google Scholar

[21] M.Morishita, K.Koyama, S.Shikata, M.Kusumoto: Z. Metallkd.96 (2005) 3237. 10.3139/146.018072Search in Google Scholar

[22] M.Morishita, H.Yamamoto, K.Tsuboki, Y.Matsumoto: Mater. Trans.47 (2006) 15551559. 10.2320/matertrans.47.1555Search in Google Scholar

[23] M.Morishita, H.Yamamoto, M.Kodera, K.Ikeda, S.Miura, Y.Yamada: Thermochim. Acta526 (2011) 9098. 10.1016/j.tca.2011.08.025Search in Google Scholar

[24] M.Morishita, K.Ikeda, N.Nishimura, S.Miura, Y.Yamada: J. Phys. Chem.C 116 (2012) 2048920495. 10.1021/jp301259nSearch in Google Scholar

[25] M.Morishita, H.Yamamoto, S.Shikada, M.Kusumoto, Y.Matsumoto, A.Onoue, N.Nishimura, H.Ohtani: Int. J. Quantum Chem.109 (2009) 26952705. 10.1002/qua.22060Search in Google Scholar

[26] M.Morishita, H.Yamamoto, S.Shikada, M.Kusumoto, Y.Matsumoto: Mater. Trans.51 (2010) 17051708. 10.2320/matertrans.MAW201024Search in Google Scholar

[27] S.Dash, N.K.Shukla: J. Therm. Anal. Calorim.112 (2013) 193200. 10.1007/s10973-012-2850-0Search in Google Scholar

[28] R.Pankajavalli, O.M.Sreedharan: J. Nucl. Mater.172 (1990) 151154. 10.1016/0022-3115(90)90432-MSearch in Google Scholar

[29] M.S.Samant, S.R.Bharadwaj, A.S.Kerkar, S.R.Dharwadkar: J. Nucl. Mater.200 (1993) 157161. 10.1016/0022-3115(93)90325-SSearch in Google Scholar

[30] Z.Singh, S.Dash, R.Prasad, V.Venugopal: J. Alloys Compd.244 (1996) 8589. 10.1016/S0925-8388(96)02429-2Search in Google Scholar

[31] M.Morishita, A.Navrotsky: J. Am. Ceram. Soc.86 (2003) 19271932. 10.1111/j.1151-2916.2003.tb03583.xSearch in Google Scholar

[32] K.Koyama, M.Morishita, T.Harada, N.Maekawa: Metall. Mater. Trans. B,34 (2003) 653659. 10.1007/s11663-003-0036-7Search in Google Scholar

[33] S.Dash, Z.Singh, N.D.Dahale, R.Prasad, V.Venugopal: J. Alloys Compd.302 (2000) 7581. 10.1016/s0925-8388(99)00822-1Search in Google Scholar

[34] E.V.Suleimanov, A.V.Golubev, E.V.Alekseev, C.A.Geiger, W.Depmeier, V.G.Krivovichev: J. Chem. Thermodyn.42 (2010) 873878. 10.1016/j.jct.2010.02.011Search in Google Scholar

[35] G.Chattopadhyay, S.N.Tripathi, A.S.Kerkar: J. Am. Ceram. Soc.67 (1984) 610614. 10.1111/j.1151-2916.1984.tb19604.xSearch in Google Scholar

[36] S.N.Tripathi, G.Chattopadhyay, A.S.Kerkar, M.S.Chandrasekharaiah: J. Am. Ceram. Soc.68 (1985) 232235. 10.1111/j.1151-2916.1985.tb15314.xSearch in Google Scholar

[37] Q.Huang, J.Xu, W.Li: Solid State Ionics32–33 (1989) 244249. 10.1016/0167-2738(89)90228-2Search in Google Scholar

[38] J.S.Hwang, K.J.Lin, C.Tien: Review of Scientific Instruments,68 (1997) 94101. 10.1063/1.1147722Search in Google Scholar

[39] J.C.Lashley, M.F.Hundley, A.Migliori, J.L.Sarrao, P.G.Pagliuso, T.W.Darling, M.Jaime, J.C.Cooley, W.L.Hults, L.Morales, D.J.Thoma, J.L.Smith, J.Boerio-Goates, B.F.Woodfield, G.R.Stewart, R.A.Fisher, N.E.Phillips: Cryogenics43 (2003) 369378. 10.1016/S0011-2275(03)00092-4Search in Google Scholar

[40] Q.Shi, T.J.Park, J.Schliesser, A.Navrotsky, B.F.Woodfield: J. Chem. Thermodyn.72 (2014) 7784. 10.1016/j.jct.2014.01.021Search in Google Scholar

[41] M.Okaji: Teion-Kougaku36 (2001) 4650. 10.2221/jcsj.36.46Search in Google Scholar

[42] Q.Shi, L.Zhang, M.E.Schlesinger, J.Boerio-Goates, B.F.Woodfield: J. Chem. Thermodyn.62 (2013) 3542. 10.1016/j.jct.2013.02.017Search in Google Scholar

[43] J.M.Schliesser, S.J.Smith, G.Li, L.Li, T.F.Walker, T.Parry, J.Boerio-Goates, B.F.Woodfield: J. Chem. Thermodyn.81 (2015) 311322. 10.1016/j.jct.2014.08.002Search in Google Scholar

[44] L.Wu, J.Schliesser, B.F.Woodfield, H.Xu, A.Navrotsky: J. Chem. Thermodyn.93 (2016) 17. 10.1016/j.jct.2015.09.019Search in Google Scholar

[45] C.Ma, Q.Shi, B.F.Woodfield, A.Navrotsky: J. Chem. Thermodyn.60 (2013) 191196. 10.1016/j.jct.2013.01.004Search in Google Scholar

[46] J.E.Gordon, C.Marcenat, J.P.Franck, I.Isaac, G.Zhang, R.Lortz, C.Meingast, F.Bouquet, R.A.Fisher, N.E.Phillips: Phys. Rev.B 65 (2001). 10.1103/PhysRevB.65.024441Search in Google Scholar

[47] M.Dixon, F.E.Hoare, T.M.Holden, D.E.Moody: The Low Temperature Specific Heats of Some Pure Metals (Cu, Ag, Pt, Al, Ni Fe Co), Proc. Royal Society of London,Vol. 285, London (1965) 561580. 10.1098/rspa.1965.0125Search in Google Scholar

[48] C.Kittel: Elementary Solid State Physics, John Wiley & Sons. Inc., New York (1962) 4565.Search in Google Scholar

[49] T.H.K.Barron, G.K.White: Heat Capacity and Thermal Expansion at Low Temperatures, Plenum Publishers, New York (1999) 234. 10.1007/978-1-4615-4695-5Search in Google Scholar

[50] K.K.Kelley, E.G.King: Contribution to the Data Theoretical Metallurgy, Part 16., Bur. Mines Invest. Bull.592 (1961) 1149.Search in Google Scholar

[51] J.M.D.Coey, S.Von Molnar, A.Torressen: J. Less Common Met.151 (1989) 191194. 10.1016/0022-5088(89)90316-0Search in Google Scholar

[52] M.Morishita, K.Koyama, T.Shiraga: Microelectronic Engineering81 (2005) 382388. 10.1016/j.mee.2005.03.037Search in Google Scholar

[53] K.Niira: Phys. Rev.117 (1960) 129133. 10.1103/PhysRev.117.129Search in Google Scholar

[54] R.A.Fisher, F.Bouquet, N.E.Phillips, J.P.Franck, G.Zhang, J.E.Gordon, C.Marcenat: Phys. Rev.B 64 (2001) 134425. 10.1103/PhysRevB.64.134425Search in Google Scholar

[55] C.L.Snow, Q.Shi, J.Boerio-Goates, B.F.Woodfield: J. Phys. Chem.C 114 (2010) 2110021108. 10.1021/jp1072704Search in Google Scholar

[56] F.J.Morin, J.P.Maita: Phys. Rev.129 (1963) 11151120. 10.1103/PhysRev.129.1115Search in Google Scholar

[57] L.M.Khriplovich, I.E.Paukov: J. Chem. Therm.15 (1983) 333337. 10.1016/0021-9614(83)90062-9Search in Google Scholar

[58] J.R.Taylor: An Introduction to Error Analysis: The Study of Uncertainty in Physical Measurement. Oxford University Press, Oxford (1982).Search in Google Scholar

[59] J.M.Lock: Proc. Phys. Soc. London Sect.B 70 (1957) 566576. 10.1088/0370-1301/70/5/303Search in Google Scholar

[60] T.Miyake, H.Akai: J. Phys. Soc. Jpn.87 (2018) 41009. 10.7566/JPSJ.87.041009Search in Google Scholar

[61] J.F.Herbst, L.G.Hector: J. Alloys Compd.693 (2017) 238244. 10.1016/j.jallcom.2016.09.138Search in Google Scholar

[62] W.W.Weller, E.G.King: Bur. Mines Rep. Invest.6147 (1963).Search in Google Scholar

[63] D.L.Martin: Phys. Rev.B 8 (1973) 53575360. 10.1103/PhysRevB.8.5357Search in Google Scholar

[64] R.Stevens, J.Boerio-Goates: J. Chem. Thermodyn.36 (2004) 857863. 10.1016/j.jct.2004.06.008Search in Google Scholar

[65] R.Sabbah, A.Xu-Wu, J.S.Chickos, M.L.P.Leitão, M.V.Roux, L.A.Torres: Thermochim. Acta331 (1999) 93204. 10.1016/S0040-6031(99)00009-XSearch in Google Scholar

[66] I.Barin: Thermochemical Data of Pure Substance, Part II, VCH Verlag (1989) 1044.Search in Google Scholar

[67] D.D.Wagman, W.H.Evans, V.B.Parker, R.H.Schumm, I.Halow, S.M.Bailey, K.L.Churney, R.L.Nuttall: J. Phys. Chem. Ref. Data11 (1982) 234.Search in Google Scholar

[68] A.P.Zhidikowa, S.D.Malinin: Geokhimiya (1972) 28.Search in Google Scholar

[69] M.E.Essington: Environ. Sci. Technol.24 (1990) 214. 10.1021/es00072a010Search in Google Scholar

[70] B.Grambow, R.Müller, A.Rother: Radiochim. Acta58–59 (1992). 10.1524/ract.1992.5859.1.71Search in Google Scholar

[71] A.R.Felmy, D.Rai, M.J.Mason: J. Solution Chem.21 (1992) 525532. 10.1007/bf00649561Search in Google Scholar

[72] H.Gamsjäger: Pure Appl. Chem.85 (2013) 20592076. 10.1351/pac-con-13-01-04Search in Google Scholar

[73] A.R.Felmy, D.Rai, M.J.Mason, R.W.Fulton: Radiochim. Acta69 (1995) 177183. 10.1524/ract.1995.69.3.177Search in Google Scholar

Received: 2018-11-13
Accepted: 2019-03-05
Published Online: 2019-08-07
Published in Print: 2019-08-12

© 2019, Carl Hanser Verlag, München

Downloaded on 12.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.111794/html
Scroll to top button