Effects of temperature field and SiC nanoparticles on microstructure and mechanical properties of n-SiCp/Mg-9 %Al composites fabricated by ultrasonication-assisted semi-solid hot pressing of powder
-
Ming Li
, Zhiwei Huang , Gaozhan Zhao , Hongxia Wang , Jianquan Tao und Yuanyuan Wan
Abstract
Mg-9 %Al magnesium matrix nanocomposites reinforced by 5 wt.% nanometre-sized SiC particles were synthesized via semi-solid powder hot pressing assisted by ultrasonication. The effect of the temperature field on the microstructure and tensile properties of the nanocomposites was systematically investigated. The distribution of the SiC nanoparticles, grain size, and morphology of the Mg17Al12 phase were found to be greatly affected by the hot-pressing temperature, resulting in strength and ductility first increasing and then decreasing with increasing hot-pressing temperatures. As the hot-pressing temperature increased to 510 °C, the nanocomposites consisted of hard SiC nanoparticles and isolated soft phases, and the SiC nanoparticles bonded well with the matrix without interfacial activity and exhibited the most uniform distribution in the nanocomposite. Moreover, compared to the Mg-9 %Al alloy, the nanocomposites exhibited significantly improved strength and excellent ductility both at room temperature and elevated temperature. The enhanced mechanical properties were attributed to the Orowan strengthening mechanism, the obvious grain boundary strengthening, and the load transfer effect.
References
[1] Q.Chen, G.Chen, L.N.Han, N.Hu, F.Han, Z.D.Zhao, X.S.Xia, Y.Y.Wan: J. Alloys Compd.656 (2016) 67–76. 10.1016/j.jallcom.2015.09.135Suche in Google Scholar
[2] Q.Chen, D.Y.Shu, C.K.Hu, Z.D.Zhao, B.G.Yuan: Mater. Sci. Eng. A541 (2012) 98–104. 10.1016/j.msea.2012.02.009Suche in Google Scholar
[3] Z.D.Zhao, Q.Chen, H.Y.Chao, S.H.Huang: Mater Design.31 (2010) 1906–1916. 10.1016/j.matdes.2009.10.056Suche in Google Scholar
[4] Q.Chen, B.G.Yuan, J.Lin, X.S.Xia, Z.D.Zhao, D.Y.Shu: J. Alloys Compd.584 (2014) 63–75. 10.1016/j.jallcom.2013.08.218Suche in Google Scholar
[5] Q.Chen, G.Chen, F.Han, X.S.Xia, Y.Wu: Metall. Mater. Trans. A48 (2017) 3497–3513. 10.1007/s11661-017-4104-zSuche in Google Scholar
[6] J.Chen, C.G.Bao, W.H.Chen, L.Zhang, J.L.Liu: J. Mater. Sci. Technol.33 (2017) 668–674. 10.1016/j.jmst.2016.07.010Suche in Google Scholar
[7] K.B.Nie, X.J.Wang, X.S.Hu, L.Xu, K.Wu, M.Y.Zheng: Mater. Sci. Eng. A528 (2011) 5278–5282. 10.1016/j.msea.2011.03.061Suche in Google Scholar
[8] K.B.Nie, X.J.Wang, K.Wu, X.S.Hu, M.Y.Zheng: Mater. Sci. Eng. A540 (2012) 123–129. 10.1016/j.msea.2012.01.112Suche in Google Scholar
[9] L.Y.Chen, J.Q.Xu, H.Choi, M.Pozuelo, X.L.Ma, S.Bhowmick, J.M.Yang, S.Mathaudhu, X.C.Li: Nature528 (2015) 539–543. PMid:26701055; 10.1038/nature16445Suche in Google Scholar PubMed
[10] R.Purohit, Y.Dewang, R.S.Rana, D.Koli, S.Dwivedi: Mater. Today: Proceedings5 (2018) 6009–6017. 10.1016/j.matpr.2017.12.204Suche in Google Scholar
[11] A.Das, S.P.Harimkar: J. Mater. Sci. Technol.30 (2014) 1059–1070. 10.1016/j.jmst.2014.08.002Suche in Google Scholar
[12] Y.F.Wu, Y.K.Gap: J. Mater. Process. Technol.211 (2011) 1341–1347. 10.1016/j.jmatprotec.2011.03.007Suche in Google Scholar
[13] S.Y.Song, X.Zhou, L.Li, W.M.Ma: Ultrason. Sonochem.24 (2015) 43–54. PMid:25559849; 10.1016/j.ultsonch.2014.12.010Suche in Google Scholar PubMed
[14] X.J.Wang, X.S.Hu, K.Wu, M.Y.Zheng, L.Zheng, Q.J.Zhai: J. Mater. Sci.44 (2009) 2759–2764. 10.1007/s10853-009-3360-8Suche in Google Scholar
[15] M.Y.Zheng, K.Wu, C.K.Yao: Mater Lett.47 (2001) 118–124. 10.1016/S0167-577X(00)00221-4Suche in Google Scholar
[16] B.F.Schultz, J.B.Ferguson, P.K.Rohatgi: Mater. Sci. Eng. A530 (2011) 87–97. 10.1016/j.msea.2011.09.042Suche in Google Scholar
[17] H.Ghandvar, S.Farahany, J.Idris: Mater. Manuf. Process.30 (2015) 1442–1449. 10.1080/10426914.2015.1004687Suche in Google Scholar
[18] Y.Yang, J.Lan, X.Li: Mater. Sci. Eng. A380 (2004) 378–383. 10.1016/j.msea.2004.03.073Suche in Google Scholar
[19] S.Li, A.Abdel-Wahab, E.Demirci, V.V.Silberschmidt: Int. J. Fract.184 (2013) 43–55. 10.1007/s10704-013-9814-7Suche in Google Scholar
[20] H.Zhang, Y.C.Zhao, Y.Yan, J.F.Fan, L.F.Wang, H.B.Dong, B.S.Xu: J. Alloys Compd.725 (2017) 652–664. 10.1016/j.jallcom.2017.07.159Suche in Google Scholar
[21] Z.Zhang, D.L.Chen: Scr. Mater.54 (2006) 1321–1326. 10.1016/j.scriptamat.2005.12.017Suche in Google Scholar
[22] Q.Zhang, D.L.Chen: Scr. Mater.51 (2004) 863–867. 10.1016/j.scriptamat.2004.07.006Suche in Google Scholar
[23] K.B.Nie, X.J.Wang, K.Wu, L.Xu, M.Y.Zheng, X.S.Hu: J. Alloys Compd.509 (2011) 8664–8669. 10.1016/j.jallcom.2011.06.091Suche in Google Scholar
[24] C.S.Goh, J.Wei, L.C.Lee, M.Gupta: Acta Mater.55 (2007) 5115–5121. 10.1016/j.actamat.2007.05.032Suche in Google Scholar
[25] L.J.Huang, L.Geng, H.X.Peng: Progress. Mater. Sci.71 (2015) 93–168. 10.1016/j.pmatsci.2015.01.002Suche in Google Scholar
[26] S.Y.Liu, W.Z.Li, X.Zhu, G.J.He: Rare Metal. Mat. Eng.4 (2013) 761–765. http://www.cnki.com.cn/Article/CJFDTotal-COSE201304021.htm.Suche in Google Scholar
[27] P.S.Roodposhti, A.Sarkar, K.L.Murty, R.O.Scattergood: J. Mater. Eng. Perform.25 (2016) 3697–3709. 10.1007/s11665-016-2222-1Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Static recrystallization characteristics and kinetics of high-silicon steels for direct quenching and partitioning
- Kinetics of intermetallic compound layers during initial period of reaction between mild steel and molten aluminum
- Effects of Cr and Zn on the interfacial microstructures of borides in Fe–Cr–B cast steels during hot-dipping in Al–Zn alloys
- Hot deformation behaviour of and processing map for an Ni-based austenitic stainless steel
- Design, microstructural characterization and heat treatment of novel Cu0.5FeNiVAlx high-entropy alloys
- Effects of temperature field and SiC nanoparticles on microstructure and mechanical properties of n-SiCp/Mg-9 %Al composites fabricated by ultrasonication-assisted semi-solid hot pressing of powder
- Investigation of the microstructure and mechanical properties of NbB2 particle reinforced aluminum matrix composites
- Effect of Al2O3/SiO2 ratio on viscosity and structure of CaO–Al2O3–SiO2–CaF2–MgO slag
- Microstructure and oxidation of Ni–Fe2O3 composite coating on AISI 304 stainless steel
- Synthesis and performance of Al3+-doped cathode materials 0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(1/3-y)Aly]O2 by high temperature solid-state method
- Growth and photo-electrochemical properties of rutile TiO2 nanowire arrays prepared by the hydrothermal method
- Deposition of fine copper film on samples placed internally and externally to the cathodic cage
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Static recrystallization characteristics and kinetics of high-silicon steels for direct quenching and partitioning
- Kinetics of intermetallic compound layers during initial period of reaction between mild steel and molten aluminum
- Effects of Cr and Zn on the interfacial microstructures of borides in Fe–Cr–B cast steels during hot-dipping in Al–Zn alloys
- Hot deformation behaviour of and processing map for an Ni-based austenitic stainless steel
- Design, microstructural characterization and heat treatment of novel Cu0.5FeNiVAlx high-entropy alloys
- Effects of temperature field and SiC nanoparticles on microstructure and mechanical properties of n-SiCp/Mg-9 %Al composites fabricated by ultrasonication-assisted semi-solid hot pressing of powder
- Investigation of the microstructure and mechanical properties of NbB2 particle reinforced aluminum matrix composites
- Effect of Al2O3/SiO2 ratio on viscosity and structure of CaO–Al2O3–SiO2–CaF2–MgO slag
- Microstructure and oxidation of Ni–Fe2O3 composite coating on AISI 304 stainless steel
- Synthesis and performance of Al3+-doped cathode materials 0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(1/3-y)Aly]O2 by high temperature solid-state method
- Growth and photo-electrochemical properties of rutile TiO2 nanowire arrays prepared by the hydrothermal method
- Deposition of fine copper film on samples placed internally and externally to the cathodic cage
- DGM News
- DGM News