Synthesis and performance of Al3+-doped cathode materials 0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(1/3-y)Aly]O2 by high temperature solid-state method
-
Aili Zhang
, Axiang Li , Shuai Tong , Lina Yv , Xinran Yang , Shihang Dai and Zhongcai Shao
Abstract
0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(1/3-y)Aly]O2 (y = 0, 0.03, 0.08, 0.13) was prepared by a high-temperature solid-state method as cathode material for lithium-ion batteries. X-ray diffraction and scanning electron microscopy were used to assess the structure and morphology of the samples. Electrochemical performance testing, AC impedance testing, and cyclic voltammetry testing were performed to study various aspects of the cathode materials. The results showed that the addition of Al3+ had little effect on the charge–discharge performance, but the cycling performance and stability of the material were significantly enhanced. When the doping fraction of Al3+ was 0.08, the cathode material 0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(19/75) Al0.08]O2 had good electrochemical performance. The first discharge specific capacity reached 161.1 mAh · g−1 in the charge and discharge test at 0.1 C rate. After 20 cycles, the discharge capacity was still 159.7 mAh · g−1. The charge–discharge specific capacity had almost no attenuation.
References
[1] M.Freire, N.V.Kosova, C.Jordy, D.Chateigner, O.I.Lebedev, A.Maignan, V.Pralong: Nat. Mater.15 (2016) 173. PMid:26595122; 10.1038/nmat4479Search in Google Scholar PubMed
[2] H.Lu, J.Hagberg, G.Lindbergh, A.Cornell: J. Power Sources4 (2018) 17. 10.3390/batteries4020017Search in Google Scholar
[3] L.Li, C.Feng, H.Zheng, J.Wang, P.He: Adv. Mater.9 (2017) 331. 10.1166/sam.2017.2298Search in Google Scholar
[4] H.H.Ryu, K.J.Park, C.S.Yoon, Y.K.Sun: Chem. Mater.30 (2018) 1155. 10.1021/acs.chemmater.7b05269Search in Google Scholar
[5] X.Dong, L.Chen, J.Liu, S.Haller, Y.Wang, Y.Xia: Sci. Adv.2 (2016) e1501038. PMid:26844298; 10.1126/sciadv.1501038Search in Google Scholar PubMed PubMed Central
[6] J.Xiao, J.Li, Z.Xu: Environ. Sci. Technol.51 (2017) 1. PMid:27951641; 10.1021/acs.est.7b02561Search in Google Scholar PubMed
[7] F.Schipper, E.M.Erickson, C.Erk, J.Y.Shin, F.F.Chesneau, D.Aurbach: J. Electrochem. Soc.164 (2017) A6220. 10.1149/2.0351701jesSearch in Google Scholar
[8] G.E.Blomgren: J. Electrochem. Soc.164 (2017) A5019. 10.1149/2.0251701jesSearch in Google Scholar
[9] J.Ma, P.Hu, G.Cui, L.Chen: Chem. Mater.28 (2016) 3578. 10.1021/acs.chemmater.6b00948Search in Google Scholar
[10] X.Tian, Y.Zhou, X.Tu, Z.Zhang, G.Du: J. Power Sources340 (2017) 40. 10.1016/j.jpowsour.2016.11.049Search in Google Scholar
[11] T.Yamanaka, H.Nakagawa, S.Tsubouchi, Y.Domi, T.Doi, T.Abe, Z.Ogumi: Electrochim. Acta234 (2017) 93. 10.1016/j.electacta.2017.03.060Search in Google Scholar
[12] B.Shen, Q.Liu, L.Wang, G.Yin, P.Zuo, Y.Ma, Y.Gao: Electrochem. Commun.83 (2017) 106. 10.1016/j.elecom.2017.09.002Search in Google Scholar
[13] J.H.Shim, N.H.Cho, S.Lee: Electrochim. Acta243 (2017) 162. 10.1016/j.electacta.2017.05.073Search in Google Scholar
[14] F.Ding, J.Li, F.Deng, G.Xu, Y.Liu, K.Yang, F.Kang: ACS Appl. Mater. Interfaces9 (2017) 27936. 10.1021/acsami.7b07221Search in Google Scholar PubMed
[15] F.Lu, X.Gao, A.Wu, N.Sun, L.Shi, L.Zheng: J. Phys. Chem. C121 (2017) 17756. 10.1021/acs.jpcc.7b06242Search in Google Scholar
[16] Y.Deng, J.Mou, H.Wu, L.Zhou, Q.Zheng, K.H.Lam, D.Lin: ChemElectroChem.4 (2017) 1362. 10.1002/celc.201600823Search in Google Scholar
[17] M.R.Laskar, D.H.K.Jackson, Y.Guan, S.Xu, S.Fang, M.Dreibelbis, T.F.Kuech: ACS Appl. Mater. Interfaces8 (2016) 10572. PMid:27035035; 10.1021/acsami.5b11878Search in Google Scholar PubMed
[18] P.Sun, Y.Ma, T.Zhai, H.Li: Electrochim. Acta191 (2016) 237. 10.1016/j.electacta.2016.01.087Search in Google Scholar
[19] S.Gu, H.Wang, C.Wu, Y.Bai, H.Li, F.Wu: E. Storage. Mat.6 (2017) 9. 10.1016/j.ensm.2016.09.001Search in Google Scholar
[20] Y.L.Wang, X.Huang, F.Li, J.S.Cao, S.H.Ye: RSC Adv.5 (2015) 49651. 10.1039/C5RA03971ASearch in Google Scholar
[21] H.Dharmesh, D.K.Kothari, Kanchan: Physica B501 (2016) 90. 10.1016/j.physb.2016.08.020Search in Google Scholar
[22] M.Masoumi, D.M.Cupid, T.L.Reichmann, K.Chang, D.Music, J.M.Schneider, H.J.Seifert: Int. J. Mater. Res.108 (2017) 869. 10.3139/146.111553Search in Google Scholar
[23] Y.Chen, G.Xu, J.Li, Y.Zhang, Z.Chen, F.Kang: Electrochim. Acta.87 (2013) 686. 10.1016/j.electacta.2012.09.024Search in Google Scholar
[24] S.Priyono, J.Triwibowo, B.Prihandoko: AIP Publishing LLC.1711 (2016) 527. 10.1063/1.4941634Search in Google Scholar
[25] D.Liu, G.T.R.Palmore: ACS Sustainable Chem. Eng.5 (2017) 5766. 10.1021/acssuschemeng.7b00371Search in Google Scholar
[26] N.M.Trease, I.D.Seymour, M.D.Radin, H.D.Liu, H.Liu, S.Hy: Chem. Mater.28 (2016) 8170. 10.1021/acs.chemmater.6b02797Search in Google Scholar
[27] M.Liang, D.Song, H.Zhang, X.Shi, Q.Wang, L.Zhang: ACS Appl. Mater. Interfaces.9 (2017) 38567. 10.1021/acsami.7b12306Search in Google Scholar PubMed
[28] L.Sun, X.Yi, X.Ren, P.Zhang, J.Liu: J. Electrochem. Soc.163 (2016) 766. 10.1149/2.1071605jesSearch in Google Scholar
[29] A.R.Madram, R.Daneshtalab, M.R.Sovizi: RSC Adv.6 (2016) 101477. 10.1039/C6RA11800CSearch in Google Scholar
[30] J.Deng, Y.Xu, L.Xiong, L.Li, X.Sun, Y.Zhang: J. Alloys Compd.677 (2016) 18. 10.1016/j.jallcom.2016.03.256Search in Google Scholar
[31] P.Sun, Y.Ma, T.Zhai, H.Li: Electrochim. Acta191 (2016) 237. 10.1016/j.electacta.2016.01.087Search in Google Scholar
[32] H.El-Shinawi, G.W.Paterson, D.A.MacLaren, E.J.Cussen, S.A.Corr: J. Mater. Chem. A5 (2017) 319. 10.1039/C6TA06961DSearch in Google Scholar
[33] K.R.Rahman, F.U.Z.Chowdhury, M.N.I.Khan: J. Magn. Magn. Mater.443 (2017) 366. 10.1016/j.jmmm.2017.07.098Search in Google Scholar
[34] Y.C.Liu, N.L.Wu, W.R.Liu: JNN.18 (2018) 68. 10.1166/jnn.2018.14550Search in Google Scholar PubMed
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Static recrystallization characteristics and kinetics of high-silicon steels for direct quenching and partitioning
- Kinetics of intermetallic compound layers during initial period of reaction between mild steel and molten aluminum
- Effects of Cr and Zn on the interfacial microstructures of borides in Fe–Cr–B cast steels during hot-dipping in Al–Zn alloys
- Hot deformation behaviour of and processing map for an Ni-based austenitic stainless steel
- Design, microstructural characterization and heat treatment of novel Cu0.5FeNiVAlx high-entropy alloys
- Effects of temperature field and SiC nanoparticles on microstructure and mechanical properties of n-SiCp/Mg-9 %Al composites fabricated by ultrasonication-assisted semi-solid hot pressing of powder
- Investigation of the microstructure and mechanical properties of NbB2 particle reinforced aluminum matrix composites
- Effect of Al2O3/SiO2 ratio on viscosity and structure of CaO–Al2O3–SiO2–CaF2–MgO slag
- Microstructure and oxidation of Ni–Fe2O3 composite coating on AISI 304 stainless steel
- Synthesis and performance of Al3+-doped cathode materials 0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(1/3-y)Aly]O2 by high temperature solid-state method
- Growth and photo-electrochemical properties of rutile TiO2 nanowire arrays prepared by the hydrothermal method
- Deposition of fine copper film on samples placed internally and externally to the cathodic cage
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Static recrystallization characteristics and kinetics of high-silicon steels for direct quenching and partitioning
- Kinetics of intermetallic compound layers during initial period of reaction between mild steel and molten aluminum
- Effects of Cr and Zn on the interfacial microstructures of borides in Fe–Cr–B cast steels during hot-dipping in Al–Zn alloys
- Hot deformation behaviour of and processing map for an Ni-based austenitic stainless steel
- Design, microstructural characterization and heat treatment of novel Cu0.5FeNiVAlx high-entropy alloys
- Effects of temperature field and SiC nanoparticles on microstructure and mechanical properties of n-SiCp/Mg-9 %Al composites fabricated by ultrasonication-assisted semi-solid hot pressing of powder
- Investigation of the microstructure and mechanical properties of NbB2 particle reinforced aluminum matrix composites
- Effect of Al2O3/SiO2 ratio on viscosity and structure of CaO–Al2O3–SiO2–CaF2–MgO slag
- Microstructure and oxidation of Ni–Fe2O3 composite coating on AISI 304 stainless steel
- Synthesis and performance of Al3+-doped cathode materials 0.6Li[Li1/3Mn2/3]O2 · 0.4Li[Ni1/3Mn1/3Co(1/3-y)Aly]O2 by high temperature solid-state method
- Growth and photo-electrochemical properties of rutile TiO2 nanowire arrays prepared by the hydrothermal method
- Deposition of fine copper film on samples placed internally and externally to the cathodic cage
- DGM News
- DGM News