Startseite Growth and photo-electrochemical properties of rutile TiO2 nanowire arrays prepared by the hydrothermal method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Growth and photo-electrochemical properties of rutile TiO2 nanowire arrays prepared by the hydrothermal method

  • Nobuaki Kitazawa und Masami Aono
Veröffentlicht/Copyright: 25. Februar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Rutile TiO2 nanowire arrays have been synthesized on a fluorine-doped tin oxide (FTO) coated glass substrate by a hydrothermal method. The effect of synthetic parameters on the morphology and initial growth mechanism have been investigated by X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy and selected area electron diffraction. Titanium n-butoxide concentration in the precursor solutions and growth temperatures are important parameters for synthesizing TiO2 nanowires. Although the FTO glass substrate showed the preferred orientation in (110), (101) and (200) faces of rutile SnO2, [001]-oriented TiO2 nanowire arrays were grown. Lattice matching between FTO and TiO2 is important for the initial nucleation and subsequent growth process. The anisotropic growth of TiO2 nanowire arrays along the [001] direction can be understood from the viewpoints of surface energy and growth rate of rutile TiO2.


Correspondence address, Professor Nobuaki Kitazawa, Department of Materials Science and Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan, Tel.: +81-46-841-3810 (ext. 3667), Fax.: +81-46-844-5910, E-mail:

References

[1] A.Fujishima, K.Honda: Bull. Chem. Soc. Jpn.44 (1971) 1148. 10.1246/bcsj.44.1148Suche in Google Scholar

[2] J.Schneider, M.Matsuoka, M.Takeuchi, J.Zhang, Y.Horiuchi, M.Anpo, D.W.Bahnemann: Chem. Rev.114 (2014) 9919. PMid:25234429; 10.1021/cr5001892Suche in Google Scholar

[3] S.M.Gupta, M.Tripathi: Chinese Sci. Bull.56 (2011) 1639. 10.1007/s11434-011-4476-1Suche in Google Scholar

[4] H.B.Wu, H.H.Hng, X.W.Lou: Adv. Mater.24 (2012) 2567. 10.1002/adma.201200564Suche in Google Scholar

[5] W.Li, Z.Wu, J.Wang, A.A.Elzatahry, D.Zhao: Chem. Mater.26 (2014) 287. 10.1021/cm4014859Suche in Google Scholar

[6] S.K.Pradhan, P.J.Reucroft, F.Yang, A.Dozier: J. Cryst. Growth256 (2003) 83. 10.1016/S0022-0248(03)01339-3Suche in Google Scholar

[7] J-M.Wu, H.C.Shih, W-T.Wu, Y-KTseng, I-C.Chen: J. Cryst. Growth, 281 (2005) 384. 10.1016/j.jcrysgro.2005.04.018Suche in Google Scholar

[8] S.Murugesan, P.Kuppusami, N.Parvathavarthini, E.Mohandas: Surf. Coating Technol.201 (2007) 7713. 10.1016/j.surfcoat.2007.03.004Suche in Google Scholar

[9] D.P.Macwan, P.N.Dave, S.Chaturvedi: J. Mater. Sci.46 (2011) 3669. 10.1007/s10853-011-5378-ySuche in Google Scholar

[10] M.Andersson, L.Österlund, S.Ljungström, A.Palmqvist: J. Phys. Chem. B106 (2002) 10674. 10.1021/jp025715ySuche in Google Scholar

[11] C.Natarajan, G.Nogami: J. Electrochem. Soc., 143 (1996) 1547. 10.1149/1.183667Suche in Google Scholar

[12] Y.C.Huang, F.S.Tsai, S.J.Wang: Jpn. J. Appl. Phys., 53 (2014) 06JG02. 10.7567/JJAP.53.06JG02Suche in Google Scholar

[13] P.Jones, J.A.Hockey: Trans. Faraday Soc.67 (1971) 2669. 10.1039/tf9716702669Suche in Google Scholar

[14] P.Jones, J.A.Hockey: Trans. Faraday Soc.67 (1971) 2679. 10.1039/ft9969202791Suche in Google Scholar

[15] Z.Wei, Y.Yao, T.Huang, A.Yu: Int. J. Electrochem. Sci.6 (2011) 1871.Suche in Google Scholar

[16] B.Liu, E.S.Aydil, J. Am. Chem. Soc.131 (2009) 3985. PMid:19245201; 10.1021/ja8078972Suche in Google Scholar

[17] U.Balachandran, N.G.Eror: J. Solid State Chem.42 (1982) 276. 10.1016/0022-4596(82)90006-8Suche in Google Scholar

[18] T.Luttrell, S.Halpegamage, J.Tao, A.Kramer, E.Sutter, M.Batzill, Scientific Reports, 4 (2014) 40431. PMid:24509651; 10.1038/srep04043Suche in Google Scholar PubMed PubMed Central

[19] D.O.Scanlon, C.W.Dunnill, J.Buckeridge, S.A.Shevlin, A.J.Logsdail, S.M.Woodley, C.Richard, A.Catlow, M.J.Powell, R.G.Palgrave, I.P.Parkin, G.W.Watson, T.W.Keal, P.Sherwood, A.Walsh, A.A.Sokol: Nature Materials12 (2013) 798. PMid:23832124; 10.1038/nmat3697Suche in Google Scholar PubMed

[20] S.Hoang, S.P.Berglund, N.T.Hahn, A.J.Bard, C.B.Mullins, J. Am. Chem. Soc.134 (2012) 3659. PMid:22316385; 10.1021/ja211369sSuche in Google Scholar PubMed

[21] O.V.Makarova, T.Rajh, M.C.Thurnauer, A.Martin, P.A.Kemme, D.Cropek: Environ. Sci. Technol.34 (2000) 4797. 10.1021/es001109Suche in Google Scholar

[22] G.Wang, H.Wang, Y.Ling, Y.Tang, X.Yang, R.C.Fitzmorris, C.Wang, J.Z.Zhang, Y.Li: Nano Lett.11 (2011) 302. PMid:22026712; 10.1021/nl201766hSuche in Google Scholar PubMed

[23] H.Cheng, J.Ma, Z.Zhao, L.Qi, Chem. Mater.7 (1995) 663. 10.1021/cm00052a010Suche in Google Scholar

[24] R.Fu, S.Gao, H.Xu, Q.Wang, Z.Wang, B.Huang, Y.Daib: RSC Adv.4 (2014) 37061. 10.1039/C4RA06152GSuche in Google Scholar

[25] H.Perron, C.Domain, J.Roque, R.Drot, E.Simoni, H.Catalette: Theoretical Chemistry Accounts117 (2007) 565. 10.1007/s00214-006-0189-ySuche in Google Scholar

[26] A.Beltrán, J.Andrés, J.R.Sambrano, E.Longo: J. Phys. Chem. A.112 (2008) 8943. 10.1021/jp801604nSuche in Google Scholar PubMed

Received: 2018-04-18
Accepted: 2018-09-11
Published Online: 2019-02-25
Published in Print: 2019-03-13

© 2019, Carl Hanser Verlag, München

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111734/html?lang=de
Button zum nach oben scrollen