Startseite Technik Effect of laser forming on mechanical properties of multiple-phase steels by using a thermal–microstructure–mechanical model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of laser forming on mechanical properties of multiple-phase steels by using a thermal–microstructure–mechanical model

  • Rui-bin Gou , Wen-jiao Dan , Min Yu und Wei-gang Zhang
Veröffentlicht/Copyright: 3. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Based on a forming temperature-controlled mixed strain-hardening law, a temperature-controlled thermal–microstructure–mechanical model was developed to predict the deformation in ferrite–martensite dual-phase steel before and after complex laser forming. Phase transformation in dual phase steel was predicted by coupling a kinetic transformation model with the developed model during laser forming. The corresponding algorithm of the constitutive model was used in three-dimensional finite element method to simulate the material deformation and mechanical properties during the laser forming. The simulated results agree well with the experimental results. Laser forming influences the mechanical properties of the material significantly, leads to bending deformation of the scanned sample and induces a ferrite-to-martensite transformation. The influence of scanning line number on the tensile strength and bending deformation of the scanned specimen was investigated. The tensile strength and bending angle are related positively to the number of scanning lines on the sample.


*Correspondence address, Dr. Wen-jiao Dan, Department of Engineering Mechanics, Shanghai Jiao Tong University, No. 800, Dongchuan Road, 200240, Shanghai, P.R. China, E-mail:
** Associate Prof. Min Yu, College of Architecture, Anhui Science and Technology University, No. 1501, Huangshan Avenue, 233000, Bengbu, Anhui, P.R. China, E-mail:

References

[1] H.Gao, G.Sheikholeslami, G.Dearden, S.P.Edwardson: Procedia Eng.183 (2017) 369374. 10.1016/j.proeng.2017.04.054Suche in Google Scholar

[2] Y.J.Shi, C.Zhang, G.D.Sun, C.X.Li: J. Mater. Process Tech.227 (2016) 169177. 10.1016/j.jmatprotec.2015.08.018Suche in Google Scholar

[3] J.Chen, S.Y.Zhang, L.Xue, H.O.Yang, X.Lin, W.D.Huang: Rare Metal. Mat. Eng.36 (2007) 475479. (in Chinese). 10.3321/j.issn:1002-185X.2007.03.025Suche in Google Scholar

[4] J.Chen, X.M.Zhao, H.O.Yang, L.P.Feng, X.Lin, W.D.Huang: Rare Metal. Mat. Eng.37 (2008) 16641668. (in Chinese). 10.3321/j.issn:1002-185X.2008.09.035Suche in Google Scholar

[5] K.Dai, L.Shaw: Acta Mater.52 (2004) 6980. 10.1016/j.actamat.2003.08.028Suche in Google Scholar

[6] Y.J.Fan, Z.S.Yang, P.Cheng, E.Keith, Y.Lawrence: J Manuf. Sci. E-T ASME, 129 (2007) 110116. 10.1115/1.2162911Suche in Google Scholar

[7] H.S.Hsieh, J.M.Lin: Int. J Mach. Tool Manu.44 (2004) 191199. 10.1016/j.ijmachtools.2003.10.003Suche in Google Scholar

[8] H.Shen, Z.Q.Yao: Opt. Laser Eng.47 (2009) 111117. 10.1016/j.optlaseng.2008.07.010Suche in Google Scholar

[9] S.Y.Zhang, X.Lin, J.Chen, W.D.Huang: Chin. Opt. Lett.7 (2009) 498501. 10.3788/COL20090706.0498Suche in Google Scholar

[10] S.Y.Zhang, X.Lin, J.Chen, W.D.Huang: Rare Metals, 28 (2009) 537544. 10.1007/s12598-009-0104-5Suche in Google Scholar

[11] X.M.Zhao, J.Chen, X.Lin, W.D.Huang: Mater. Sci. Eng. A, 478 (2008) 119124. 10.1016/j.msea.2007.05.079Suche in Google Scholar

[12] X.M.Zhao, X.Lin, J.Chen, L.Xue, W.D.Huang: Mater. Sci. Eng. A, 504 (2009) 129134. 10.1016/j.msea.2008.12.024Suche in Google Scholar

[13] S.S.Chakraborty, HarshitMore, V.Racherla, A.K.Nath: J Mater. Process Tech.222 (2015) 128141. 10.1016/j.jmatprotec.2015.02.044Suche in Google Scholar

[14] S.S.Chakraborty, K.Maji, V.Racherla, A.K.Nath: Opt. Laser Technol.71 (2015) 2944. 10.1016/j.optlastec.2015.02.013Suche in Google Scholar

[15] H.Gao, G.Sheikholeslami, G.Dearden, S.P.Edwardson: Physics Procedia, 83 (2016) 286295. 10.1016/j.phpro.2016.08.027Suche in Google Scholar

[16] W.J.Dan, W.G.Zhang: Advanced Materials Research, 314–316 (2011) 331336. 10.4028/www.scientific.net/AMR.314-316.331Suche in Google Scholar

[17] H.K.D.H.Bhadeshia, L.E.Svensson, in: H.Cerjak, K.E.Easterling (Eds.), Mathematical Modeling of Weld Phenomena, Institute of Materials, (1993) 109182. https://www.phase-trans.msm.cam.ac.uk/2005/Graz.pdfSuche in Google Scholar

[18] Z.Liu, Z.J.Wu, J.Z.Wu, Y.Zhang: Numerical simulation of heat treatment process, science press, Beijing (1996) 107108. (in Chinese).Suche in Google Scholar

Received: 2018-01-09
Accepted: 2018-04-30
Published Online: 2018-10-03
Published in Print: 2018-10-16

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 2.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.111690/html?lang=de
Button zum nach oben scrollen