Home Technology Nanophase formation during the heat treatment of Al-13Si-5Cu-2Ni-1Mg alloy and the abnormal enhancement of its tensile properties
Article
Licensed
Unlicensed Requires Authentication

Nanophase formation during the heat treatment of Al-13Si-5Cu-2Ni-1Mg alloy and the abnormal enhancement of its tensile properties

  • Lusha Tian , Yongchun Guo , Jianping Li , Feng Xia and Wei Yang
Published/Copyright: October 3, 2018

Abstract

Two T6 (500°C × 3 h, water quenching and 210°C × 6 h, air cooling) samples of Al-13Si-5Cu-2Ni-1Mg alloy were furture heated to 350°C and 420°C, respectively for various times. The tensile strength of the alloy, measured at both room temperature and 350°C is observed to abnormally increase, especially for the samples that were heated to 420°C. Al11Cu5Mn3 nanoparticles that form stably during these heating processes exhibit a higher volume fraction after the exposure to 420°C than that obtained by the exposure to 350°C. These nanoparticles were responsible for enhancing the alloy's tensile properties because of the precipitation strengthening effect of the second nano-phase.


*Correspondence address, Prof. Jianping Li, Materials and Chemical Engineering School, Xi'an Technological University, Xuefu Middle Road No. 2, Xi'an Shaanxi 710021, P.R. China, Tel.: +86-29-83208080, Fax: +86-29-83208080, E-mail: (J.P. Li)

References

[1] S.Manasijevic, R.Radisa, S.Markovic, Z.Acimovic–Pavlovic, K.Raic: Intermetallics19 (2011) 486. 10.1016/j.intermet.2010.11.011Search in Google Scholar

[2] N.A.Belov, D.Eskin, N.Avxenieva: Acta Mater.58 (2005) 4709. 10.1016/j.actamat.2005.07.003Search in Google Scholar

[3] M.Samoshina, N.Belov: ICAA13: 13th International Conference on Aluminum Alloys, (2012)1245. 10.1002/9781118495292.ch188Search in Google Scholar

[4] F.J.H.Ehlers: Comput. Mater. Sci.81 (2014) 617. 10.1016/j.commatsci.2013.08.037Search in Google Scholar

[5] F.C.RHernándezJ.H.Sokolowski: J. Alloys Compd.419 (2006) 180. 10.1016/j.jallcom.2005.07.077Search in Google Scholar

[6] M.Zeren: Mater. Des.28 (2007) 2511. 10.1016/j.matdes.2006.09.010Search in Google Scholar

[7] R.Taghiabadi, H.M.Ghasemi, S.G.Shabestari: Mater. Sci. Eng.A 490 (2008) 162. 10.1016/j.msea.2008.01.001Search in Google Scholar

[8] Z.Qian, X.Liu, D.Zhao, G.Zhang: Mater. Lett.62 (2008) 2146. 10.1016/j.matlet.2007.11.035Search in Google Scholar

[9] A.J.Moffat, B.G.Mellor, I.Sinclair, P.A.S.Reed: Mater. Sci. Technol.23 (2007) 1396. 10.1179/174328407X243988Search in Google Scholar

[10] J.Barrirero, J.Li, M.Engstler, N.Ghafoor, P.Schumacher, M.Odén, F.Mücklich: Scr. Mater.117 (2016) 16. 10.1016/j.scriptamat.2016.02.018Search in Google Scholar

[11] J.G.Jung, S.H.Lee, J.M.Lee, Y.H.Cho, S.H.Kim, W.H.Yoon: Mater. Sci. Eng.A 669 (2016) 187. 10.1016/j.msea.2016.05.087Search in Google Scholar

[12] S.Ji, D.Watson, Z.Fan, M.White: Mater. Sci. Eng.A 556 (2012) 824. 10.1016/j.msea.2012.07.074Search in Google Scholar

[13] H.L.Yang, S.X.Ji, Z.Y.Fan: Mater. Des.85 (2015) 823. 10.1016/j.matdes.2015.07.074Search in Google Scholar

[14] R.Mikalsen, A.P.Roskilly: Appl. Energy86 (2009) 89. 10.1016/j.apenergy.2008.04.012Search in Google Scholar

[15] L.Ceschin, A.Morri, A.Morri, M.D.Sabatino: Mater. Sci. Eng.A 639 (2015) 288. 10.1016/j.msea.2015.04.080Search in Google Scholar

[16] G.Nicolettoa, E.Rivaa, A.D.Filippob: Procedia Eng.74 (2014) 157. 10.1016/j.proeng.2014.06.241Search in Google Scholar

[17] M.Rosso, I.Peter, C.Castella: La Metallurgia Italiana107 (2015) 3743.Search in Google Scholar

[18] S.Tutunchilara, M.K.Besharati Givib, M.Haghpanahia, P.Asadib: Mater. Sci. Eng.A 534 (2012) 557. 10.1016/j.msea.2011.12.008Search in Google Scholar

[19] Y.Tang, Y.Liu, L.X.Lian, L.He: Mater. Res.27 (2012) 2771. 10.1557/jmr.2012.307Search in Google Scholar

Received: 2018-02-14
Accepted: 2018-06-28
Published Online: 2018-10-03
Published in Print: 2018-10-16

© 2018, Carl Hanser Verlag, München

Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.111693/html
Scroll to top button