Home Technology Effect of minor Nd substitution for Y on microstructure and corrosion resistance of extruded Mg–Zn–Y alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of minor Nd substitution for Y on microstructure and corrosion resistance of extruded Mg–Zn–Y alloy

  • Yuezhong Zhang , Xiaoyu Wang , Baosheng Liu , Kewei Zhang , Xudong Zhao and Daqing Fang
Published/Copyright: October 3, 2018

Abstract

The influence of minor Nd substitution on the microstructure and corrosion resistance of Mg–Zn–Y alloy were investigated. Results indicate that the partial substitution of Nd for Y can effectively refine grains but deteriorate the corrosion resistance of extruded Mg–Zn–Y alloy. The corrosion rates, measured by immersion tests in 3.5% NaCl solution at 25°C, are 12 and 19 mm · y−1 for the Mg-5.6Zn-1.4Y and Mg-5.6Zn-1.0Y-0.4Nd alloys, respectively. The negative effect of Nd is associated with enhanced microgalvanic corrosion resulting from grain refinement and higher area of second phase, as well as to a degraded protectiveness of the corrosion product layer.


*Correspondence address, Dr. Baosheng Liu and Dr. Daqing Fang, College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, P.R. China, Tel.: +86-351-2161126, Fax: +86-351-2161126, E-mail: (Baosheng Liu) (Daqing Fang)

References

[1] S.Q.Feng, W.Y.Zhang, Y.H.Zhang, J.Y.Guan, Y.C.Xu: Mater. Sci. Eng.A 609 (2014) 283292. 10.1016/j.msea.2014.05.019Search in Google Scholar

[2] G.L.Song, A.Atrens: Adv. Eng. Mater.5 (2003) 837858. 10.1002/adem.200310405Search in Google Scholar

[3] G.L.Song, A.Atrens: Adv. Eng. Mater.1 (1999) 1133. 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-NSearch in Google Scholar

[4] A.Atrens, G.L.Song, M.Liu, Z.Shi, F.Cao, M.S.Dargusch: Adv. Eng. Mater.17 (2015) 400453. 10.1002/adem.201400434Search in Google Scholar

[5] A.Atrens, G.L.Song, F.Cao, Z.Shi, P.K.Bowen: J. Magnes. Alloys1 (2013) 177200. 10.1016/j.jma.2013.09.003Search in Google Scholar

[6] T.Zhang, G.Meng, Y.Shao, Z.Cui, F.Wang: Corros. Sci.53 (2011) 29342942. 10.1016/j.corsci.2011.05.035Search in Google Scholar

[7] R.Arrabal, B.Mingo, A.Pardo, E.Matykina, M.Mohedano, M.C.Merino, A.Rivas, A.Maroto: Corros. Sci.97 (2015) 3848. 10.1016/j.corsci.2015.04.004Search in Google Scholar

[8] A.R.Wu, C.Q.Xia: Mater. Des.28 (2007) 19631967. 10.1016/j.matdes.2006.04.023Search in Google Scholar

[9] H.T.Zhou, Z.D.Zhang, C.M.Liu, Q.W.Wang: Mater. Sci. Eng.A 445–446 (2007) 16. 10.1016/j.msea.2006.04.028Search in Google Scholar

[10] G.L.Song, A.Atrens, D.St. John: Magnes. Technol. (2001) 255262. 10.1007/978-3-319-48099-2_90Search in Google Scholar

[11] L.Zhang, W.Zhou, P.H.Hu, Q.Zhou: J. Alloys Compd.688 (2016) 868874. 10.1016/j.jallcom.2016.07.280Search in Google Scholar

[12] N.I.Z.Abidin, A.D.Atrens, D.Martin, A.Atrens: Corros. Sci.53 (2011) 35423556. 10.1016/j.corsci.2011.06.030Search in Google Scholar

[13] M.Liu, P.J.Uggowitzer, A.V.Nagasekhar, P.Schmutz, M.Easton, G.Song, A.Atrens: Corros. Sci.51 (2009) 602619. 10.1016/j.corsci.2008.12.015Search in Google Scholar

[14] M.C.Zhao, M.Liu, G.Song, A.Atrens: Adv. Eng. Mater.10 (2008) 104111. 10.1002/adem.200700246Search in Google Scholar

[15] T.Zhang, Y.W.Shao, G.Z.Meng, Z.Y.Cui, F.H.Wang: Corros. Sci.53 (2011) 19601968. 10.1016/j.corsci.2011.02.015Search in Google Scholar

Received: 2018-01-25
Accepted: 2018-03-12
Published Online: 2018-10-03
Published in Print: 2018-10-16

© 2018, Carl Hanser Verlag, München

Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.111683/html
Scroll to top button