Startseite Technik Effect of minor Nd substitution for Y on microstructure and corrosion resistance of extruded Mg–Zn–Y alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of minor Nd substitution for Y on microstructure and corrosion resistance of extruded Mg–Zn–Y alloy

  • Yuezhong Zhang , Xiaoyu Wang , Baosheng Liu , Kewei Zhang , Xudong Zhao und Daqing Fang
Veröffentlicht/Copyright: 3. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The influence of minor Nd substitution on the microstructure and corrosion resistance of Mg–Zn–Y alloy were investigated. Results indicate that the partial substitution of Nd for Y can effectively refine grains but deteriorate the corrosion resistance of extruded Mg–Zn–Y alloy. The corrosion rates, measured by immersion tests in 3.5% NaCl solution at 25°C, are 12 and 19 mm · y−1 for the Mg-5.6Zn-1.4Y and Mg-5.6Zn-1.0Y-0.4Nd alloys, respectively. The negative effect of Nd is associated with enhanced microgalvanic corrosion resulting from grain refinement and higher area of second phase, as well as to a degraded protectiveness of the corrosion product layer.


*Correspondence address, Dr. Baosheng Liu and Dr. Daqing Fang, College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, P.R. China, Tel.: +86-351-2161126, Fax: +86-351-2161126, E-mail: (Baosheng Liu) (Daqing Fang)

References

[1] S.Q.Feng, W.Y.Zhang, Y.H.Zhang, J.Y.Guan, Y.C.Xu: Mater. Sci. Eng.A 609 (2014) 283292. 10.1016/j.msea.2014.05.019Suche in Google Scholar

[2] G.L.Song, A.Atrens: Adv. Eng. Mater.5 (2003) 837858. 10.1002/adem.200310405Suche in Google Scholar

[3] G.L.Song, A.Atrens: Adv. Eng. Mater.1 (1999) 1133. 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-NSuche in Google Scholar

[4] A.Atrens, G.L.Song, M.Liu, Z.Shi, F.Cao, M.S.Dargusch: Adv. Eng. Mater.17 (2015) 400453. 10.1002/adem.201400434Suche in Google Scholar

[5] A.Atrens, G.L.Song, F.Cao, Z.Shi, P.K.Bowen: J. Magnes. Alloys1 (2013) 177200. 10.1016/j.jma.2013.09.003Suche in Google Scholar

[6] T.Zhang, G.Meng, Y.Shao, Z.Cui, F.Wang: Corros. Sci.53 (2011) 29342942. 10.1016/j.corsci.2011.05.035Suche in Google Scholar

[7] R.Arrabal, B.Mingo, A.Pardo, E.Matykina, M.Mohedano, M.C.Merino, A.Rivas, A.Maroto: Corros. Sci.97 (2015) 3848. 10.1016/j.corsci.2015.04.004Suche in Google Scholar

[8] A.R.Wu, C.Q.Xia: Mater. Des.28 (2007) 19631967. 10.1016/j.matdes.2006.04.023Suche in Google Scholar

[9] H.T.Zhou, Z.D.Zhang, C.M.Liu, Q.W.Wang: Mater. Sci. Eng.A 445–446 (2007) 16. 10.1016/j.msea.2006.04.028Suche in Google Scholar

[10] G.L.Song, A.Atrens, D.St. John: Magnes. Technol. (2001) 255262. 10.1007/978-3-319-48099-2_90Suche in Google Scholar

[11] L.Zhang, W.Zhou, P.H.Hu, Q.Zhou: J. Alloys Compd.688 (2016) 868874. 10.1016/j.jallcom.2016.07.280Suche in Google Scholar

[12] N.I.Z.Abidin, A.D.Atrens, D.Martin, A.Atrens: Corros. Sci.53 (2011) 35423556. 10.1016/j.corsci.2011.06.030Suche in Google Scholar

[13] M.Liu, P.J.Uggowitzer, A.V.Nagasekhar, P.Schmutz, M.Easton, G.Song, A.Atrens: Corros. Sci.51 (2009) 602619. 10.1016/j.corsci.2008.12.015Suche in Google Scholar

[14] M.C.Zhao, M.Liu, G.Song, A.Atrens: Adv. Eng. Mater.10 (2008) 104111. 10.1002/adem.200700246Suche in Google Scholar

[15] T.Zhang, Y.W.Shao, G.Z.Meng, Z.Y.Cui, F.H.Wang: Corros. Sci.53 (2011) 19601968. 10.1016/j.corsci.2011.02.015Suche in Google Scholar

Received: 2018-01-25
Accepted: 2018-03-12
Published Online: 2018-10-03
Published in Print: 2018-10-16

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 2.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.111683/html
Button zum nach oben scrollen