Effect of processing parameters on the microstructural and mechanical properties of aluminum–carbon nanotube composites produced by spark plasma sintering
-
B. Sadeghi
, M. Shamanian , P. Cavaliere und F. Ashrafizadeh
Abstract
Spark plasma sintering (SPS) has been recognized, in the recent past, as a very useful method to produce metal matrix composites with enhanced mechanical and wear properties. Obviously, the material's final properties are strongly related to the reinforcement types and percentages as well as to the processing parameters employed during synthesis. The present paper analyses the effect of 0.5 and 1% of carbon nanotubes addition on the mechanical and microstructural behavior of Al-based metal matrix composites produced via SPS. The microstructural and mechanical behavior is analyzed as a function of the SPS parameters: heating rate, sintering temperature and pressure.
References
[1] E.Ghasali, A.Pakseresht, F.Safari-kooshali, M.Agheli, T.Ebadzadeh: Mater. Sci. Eng.A 627 (2015) 27. 10.1016/j.msea.2014.12.096Suche in Google Scholar
[2] E.Ghasali, M.Alizade, T.Ebadzadeh: J. Alloys Compd.655 (2016) 93. Doi 10.1016/j.jallcom.2015.09.024. 10.1016/j.jallcom.2015.09.024Suche in Google Scholar
[3] M.Kubota, P.Cizek, W.M.Rainforth: Compos. Sci. Technol.68 (2008) 888. 10.1016/j.compscitech.2007.08.010Suche in Google Scholar
[4] M.Kubota, J.Kaneko, M.Sugamata: Mater. Sci. Eng.A475 (2008) 96. 10.1016/j.msea.2007.02.130Suche in Google Scholar
[5] M.Kubota: J. Alloys Compd.504S (2010) S319. 10.1016/j.jallcom.2010.03.224Suche in Google Scholar
[6] E.Ghasali, A.H.Pakseresht, M.Alizadeh, K.Shirvanimoghaddam, T.Ebadzadeh: J. Alloys Compd.688 (2016) 527. 10.1016/j.jallcom.2016.07.063Suche in Google Scholar
[7] E.Ghasali, H.Nouraniana, A.Rahbari, H.Majidian, M.Alizadeh, T.Ebadzadeh: Mater. Res.19 (2016) 1189. 10.1590/1980-5373-MR-2016-0395Suche in Google Scholar
[8] E.A.Olevsky, S.Kandurkuri, L.Froyen: J. Appl. Phys.102 (2007) 114913. 10.1063/1.2822189Suche in Google Scholar
[9] E.A.Olevsky, L.Froyen: J. Am. Ceram. Soc.92 (2009) S122. 10.1111/j.1551-2916.2008.02705.xSuche in Google Scholar
[10] N.Saheb, I.K.Aliyu, S.F.Hassan, N.Al-Aqeeli: Materials7 (2014) 6748. 28788210 10.3390/ma7096748Suche in Google Scholar PubMed PubMed Central
[11] H.Kwon, D.H.Park, Y.Park, J.F.Silvain, A.Kawasaki, Y.Park: Met. Mater. Int.16 (2010) 71. 10.1007/s12540-010-0071-2Suche in Google Scholar
[12] M.Kubota, P.B.Wynne: Scr. Mater.57 (2007) 719. 10.1016/j.scriptamat.2007.06.036Suche in Google Scholar
[13] R.Vintila, A.Charest, R.A.L.Drew, M.Brochu: Mater. Sci. Eng.A 528 (2011) 4395. 10.1016/j.msea.2011.02.079Suche in Google Scholar
[14] S.Bathul, R.C.Anandani, A.Dhar, A.K.Srivastava: Mater. Sci. Eng.A 545 (2012) 97. 10.1016/j.msea.2012.02.095Suche in Google Scholar
[15] Z-F.Liu, Z-H.Zhang, J-F.Lu, A.V.Korznikov, E.Korznikova, F-C.Wang: Mater. Des.64 (2014) 625. 10.1016/j.matdes.2014.08.030Suche in Google Scholar
[16] ZA.Munir, VD.Quach: J. Am. Ceram. Soc.94 (2011) 1. 10.1111/j.1551-2916.2010.04210.xSuche in Google Scholar
[17] K.L.Firestein, S.Corthay, A.E.Steinman, A.T.Matveev, A.M.Kovalskii, I.V.Sukhorukova, D.Golberg, D.V.Shtansky: Mater. Sci. Eng.A 681 (2017) 1. 10.1016/j.msea.2016.11.011Suche in Google Scholar
[18] N.K.Babu, K.Kallip, M.Leparoux, K.A.AlOgab, X.Maeder, Y.A.Rojas Dasilva: Mater. Des.95 (2016) 534. 10.1016/j.matdes.2016.01.138Suche in Google Scholar
[19] M.Mansoor, M.Shahid: Sci. Eng. Comp. Mater.10.1515/secm-2015-0493Suche in Google Scholar
[20] M.Shahid, M.Mansoor: Int. J. Mol. Nuc. Mater. Met. Eng.10 (2016) 682. 10.1999/1307-6892/10004490Suche in Google Scholar
[21] R.George, K.T.Kashyap, R.R.S.Yamdagni: Scripta Mater.53 (2005) 1159. 10.1016/j.scriptamat.2005.07.022Suche in Google Scholar
[22] J.Zhang, H.Shi, M.Cai, L.Liu, P.Zha: Mater. Sci. Eng.A 527 (2009) 218. 10.1016/j.msea.2009.08.008Suche in Google Scholar
[23] G.A.Sweet, M.Brochu, R.L.HexemerJr.: Mater. Sci. Eng.A 648 (2015) 123. 10.1016/j.msea.2015.09.027Suche in Google Scholar
[24] U.Anselmi-Tamburini, S.Gennari, J.E.Garay, Z.A.Munir: Mater. Sci. Eng.A 394 (2005) 139. 10.1016/j.msea.2004.11.019Suche in Google Scholar
[25] E.Olevsky, L.Froyen: Scr. Mater.55 (2006) 1175. 10.1016/j.scriptamat.2006.07.009Suche in Google Scholar
[26] G.A.Sweet, M.Brochu, R.L.HexemerJr, I.W.Donaldson, D.P.Bishop: Mater. Sci. Eng.A608 (2014) 273. 10.1016/j.msea.2014.04.078Suche in Google Scholar
[27] Z.Shen, M.Johnsson, Z.Zhao, M.Nygren: J. Am. Ceram. Soc.85 (2002) 1921. 10.1111/j.1151-2916.2002.tb00286.xSuche in Google Scholar
[28] T.Laha, S.Kuchibhatla, S.Seal, W.Li, A.Agarwal: Acta Mater.55 (2007) 1059. 10.1016/j.actamat.2006.09.025Suche in Google Scholar
[29] S.Diouf, A.Molinari: Powder Technol.221 (2012) 220. 10.1016/j.powtec.2012.01.005Suche in Google Scholar
[30] J.Garay: Annu. Rev. Mater. Res.40 (2010) 445. 10.1146/annurev-matsci-070909-104433Suche in Google Scholar
[31] N.Saheb: Sci. Sinter.47 (2015) 119. 10.2298/SOS1502119SSuche in Google Scholar
[32] N.Saheb, MS.Khan, AS.Hakeem: J. Nanomaterials2015 (2015) 609824. 10.1155/2015/609824Suche in Google Scholar
[33] J.Milligan, R.Gauvin, M.Brochu: Philos. Mag.93 (2013) 2445. 10.1080/14786435.2013.777816Suche in Google Scholar
[34] D.Liu, Y.Xiong, TD.Topping, Y.Zhou, C.Haines, J.Paras, D.Martin, D.Kapoor, J.M.Schoenung, E.J.Lavernia: Metall. Mater. Trans.A 43 (2012) 340. 10.1007/s11661-011-0841-6Suche in Google Scholar
[35] W.Chen, U.Anselmi-Tamburini, J.E.Garay, J.R.Groza, Z.A.Munir: Mater. Sci. Eng.A 394 (2005) 132. 10.1016/j.msea.2004.11.020Suche in Google Scholar
[36] Z.A.Munir, U.Anselmi-Tamburini, M.Ohtanagi: J. Mater. Sci.41 (2006) 763. 10.1007/s10853-006-6555-2Suche in Google Scholar
[37] I.K.Aliyu, N.Saheb, S. FidaHassan, N.Al-Aqeeli: Materials5 (2015) 70. 10.3390/met5010070Suche in Google Scholar
[38] G.Lalet, H.Kurita, T.Miyazaki, A.Kawasaki, J.F.Silvain: J. Mater. Sci.49 (2014) 3268. 10.1007/s10853-014-8032-7Suche in Google Scholar
[39] F.Ostovan, K.A.Matori, M.Toozandehjani, A.Oskoueian, H.M.Yusoff, R.Yunus, A.H.M.Ariff, H.J.Quah, W.F.Lim: Mater. Chem. Phys.166 (2015) 160. 10.1016/j.matchemphys.2015.09.041Suche in Google Scholar
[40] P.Cavaliere, B.Sadeghi, A.Shabani: J. Mater. Sci.52 (2017) 8618. 10.1007/s10853-017-1086-6Suche in Google Scholar
[41] G.M.Le, A.Godfrey, N.Hansen, W.Liu, G.Winther, X.Huang: Acta Mater.61 (2013) 7072. 10.1016/j.actamat.2013.07.046Suche in Google Scholar
[42] K.Morsi, A.M.K.Esawi, P.Borah, S.Lanka, A.Sayed: J. Compos. Mater.44 (2010) 199. 10.1177/0021998310361990Suche in Google Scholar
[43] L.Jin-Zhi, T.Ming-Jen, S.Idapalapati: Mater. Des.31 (2010) S96. 10.1016/j.matdes.2009.10.022Suche in Google Scholar
[44] A.M.K.Esawi, K.Morsi, A.Sayed, M.Taher, S.Lanka: Compos. Sci. Technol.70 (2010) 2237. 10.1016/j.compscitech.2010.05.004Suche in Google Scholar
[45] K.Morsi, A.M.K.Esawi, S.Lanka, A.Sayed, M.Taher: Composites PartA 41 (2010) 322. 10.1016/j.compositesa.2009.09.028Suche in Google Scholar
[46] K.Dash, D.Chaira, B.C.Ray: Mater. Res. Bull.48 (2013) 2535. 10.1016/j.materresbull.2013.03.014Suche in Google Scholar
[47] L.Wang, Y.Liu, J.Wu, X.Zhang: Int. J. Min. Met. Mater.24 (2017) 584. 10.1007/s12613-017-1390-9Suche in Google Scholar
[48] N. DongHoon, C. SeungIl, L. KyungMoon, J. JunHo, P. HoonMo, L. JongKook, H. SoonHyung: J. Nanosci. Nanotechno.16 (2016) 12013. 10.1166/jnn.2016.13635Suche in Google Scholar
[49] J.Wu, H.Zhang, Y.Zhang, X.Wang: Mater. Des.41 (2012) 344. 10.1016/j.matdes.2012.05.014Suche in Google Scholar
[50] H.Kwon, J.Park, S.Joo, S.Hong, J.Mun: J. Korean Powder Metall. Inst.23 (2016) 195. 10.4150/KPMI.2016.23.3.195Suche in Google Scholar
[51] J-Z.Liao, M-J.Tan, I.Sridhar: Mater. Des.31 (2010) S96. 10.1016/j.matdes.2009.10.022Suche in Google Scholar
[52] W.Tian, S.Li, B.Wang, X.Chen, J.Liu, M.Yu: Int. J. Min. Met. Mater.23 (2016) 723. 10.1007/s12613-016-1286-0Suche in Google Scholar
[53] A.A.Najimi, H.Shahverdi: Mater. Sci. Eng.A 702 (2017) 87. 10.1016/j.msea.2017.04.041Suche in Google Scholar
[54] B.Guo, M.Song, J.Yi, S.Ni, T.Shen, Y.Du: Mater Des120 (2017) 56. 10.1016/j.matdes.2017.01.096Suche in Google Scholar
[55] B.Chen, S.Li, H.Imai, L.Jia, J.Umeda, M.Takahashi, K.Kondoh: J. Alloys Compd.651 (2015) 608. 10.1016/j.jallcom.2015.08.178Suche in Google Scholar
[56] H.Kwon, M.Leparoux, A.Kawasaki: J. Mater. Sci. Technol.30 (2014) 736. 10.1016/j.jmst.2014.03.003Suche in Google Scholar
[57] B.Chen, H.Imai, J.Umeda, M.Takahashi, K.Kondoh: JOM69 (2017) 669. 10.1007/s11837-017-2263-4Suche in Google Scholar
[58] H.Kwon, M.Takamichi, A.Kawasaki, M.Leparoux: Mater. Chem. Phys.138 (2013) 787. 10.1016/j.matchemphys.2012.12.062Suche in Google Scholar
[59] H.Kurita, M.Estili, H.Kwon, T.Miyazaki, W.Zhou, J.F.Silvain, A.Kawasaki: Composites PartA 68 (2015) 133. 10.1016/j.compositesa.2014.09.014Suche in Google Scholar
[60] L.K.Singh, A.Maiti, R.S.Maurya, T.Laha: Mater. Manuf. Process.31 (2016) 733. 10.1080/10426914.2015.1070419Suche in Google Scholar
[61] A.Bisht, M.Srivastav, R. ManojKumar, I.Lahiri, D.Lahiri: Mater. Sci. Eng.A 695 (2017) 20. 10.1016/j.msea.2017.04.009Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Statistical analysis of micropore size distributions in Al–Si castings evaluated by X-ray computed tomography
- Effect of processing parameters on the microstructural and mechanical properties of aluminum–carbon nanotube composites produced by spark plasma sintering
- Synthesis of ZnO nanomaterials with different morphologies by hydrothermal method
- Dielectric studies of CCTO-based nanocomposite ceramic synthesized by a solid state route
- Effect of laser forming on mechanical properties of multiple-phase steels by using a thermal–microstructure–mechanical model
- Effect of temper rolling and subsequent annealing on texture development and magnetic permeability of semi-processed electrical steel with 2.3 wt.% Si
- Compressive behavior of double-layered functionally graded 316L stainless steel foam
- Microstructure and mechanical behavior of Mg–Y–Zn alloys with respect to varying content of LPSO phase
- Microstructural evolution of semi-solid A356 alloy during reheating
- Lewis–Br⊘nsted induction acidity in SBA-15 modified with Zr and P
- Short Communications
- Nanophase formation during the heat treatment of Al-13Si-5Cu-2Ni-1Mg alloy and the abnormal enhancement of its tensile properties
- Effect of minor Nd substitution for Y on microstructure and corrosion resistance of extruded Mg–Zn–Y alloy
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Statistical analysis of micropore size distributions in Al–Si castings evaluated by X-ray computed tomography
- Effect of processing parameters on the microstructural and mechanical properties of aluminum–carbon nanotube composites produced by spark plasma sintering
- Synthesis of ZnO nanomaterials with different morphologies by hydrothermal method
- Dielectric studies of CCTO-based nanocomposite ceramic synthesized by a solid state route
- Effect of laser forming on mechanical properties of multiple-phase steels by using a thermal–microstructure–mechanical model
- Effect of temper rolling and subsequent annealing on texture development and magnetic permeability of semi-processed electrical steel with 2.3 wt.% Si
- Compressive behavior of double-layered functionally graded 316L stainless steel foam
- Microstructure and mechanical behavior of Mg–Y–Zn alloys with respect to varying content of LPSO phase
- Microstructural evolution of semi-solid A356 alloy during reheating
- Lewis–Br⊘nsted induction acidity in SBA-15 modified with Zr and P
- Short Communications
- Nanophase formation during the heat treatment of Al-13Si-5Cu-2Ni-1Mg alloy and the abnormal enhancement of its tensile properties
- Effect of minor Nd substitution for Y on microstructure and corrosion resistance of extruded Mg–Zn–Y alloy
- DGM News
- DGM News