Lewis–Br⊘nsted induction acidity in SBA-15 modified with Zr and P
-
Karina Cruz-Rodríguez
, Ricardo García-Alamilla , Francisco Paraguay-Delgado , María-Guadalupe Cárdenas-Galindo , Brent E. Handy and Juan Reyes-Gómez
Abstract
In this work, we present the synthesis of SBA-15 materials modified with 6 and 9 mol.% of Zr and P, respectively. Silanol SBA-15 groups were detected by Fourier transform infrared spectroscopy. X-ray diffractograms revealed that the typical hexagonal arrangement of SBA-15 was preserved after Zr and P introduction, and the structure was confirmed by transmission electron microscopy. After the Zr introduction, the morphology of SBA-15 changed from fibrous particles to a semi-spherical shape according to scanning electron microscopy, while nitrogen physisorption revealed the stability of the textural materials after the P introduction. The infrared spectra of pyridine adsorption indicated that the Zr and P incorporation into SBA-15 generated adequate Lewis and Br⊘nsted acidities to carry out methanol dehydration and direct the selectivity towards dimethyl ether, with medium-strong acid sites being responsible for obtaining up to 99% selectivity towards dimethyl ether.
References
[1] D.Zhao, J.Feng, Q.Huo, N.Melosh, G.H.Fredrickson, B.F.Chmelka, G.D.Stucky: Science279 (1998) 548–52. 9438845 10.1126/science.279.5350.548Search in Google Scholar PubMed
[2] J.Jarupatrakorn, T.D.Tilley: J. Am. Chem. Soc.124 (2002) 8380–8388. 12105919 10.1021/ja0202208Search in Google Scholar PubMed
[3] D.Zhao, Q.Huo, J.Feng, B.F.Chmelka, G.D.Stucky: J. Am. Chem. Soc.120 (1998) 6024–6036. 10.1021/Ja974025iSearch in Google Scholar
[4] D.R.Burri, K.M.Choi, J.H.Lee, D.S.Han, S.E.Park: Catal. Commun.8 (2007) 43–48. 10.1016/j.catcom.2006.05.024Search in Google Scholar
[5] C.L.Chen, T.Li, S.Cheng, N.Xu, C.Y.Mou: Catal. Lett.78 (2002) 223–229. 10.1023/A:1014908618311Search in Google Scholar
[6] J.Zhang, Z.Ma, J.Jiao, H.Yin, W.Yan, E.W.Hagaman, J.Yu, S.Dai: Langmuir25 (2009) 12541–12549. 10.1021/la9017486Search in Google Scholar PubMed
[7] J.M.R.Gallo, C.Bisio, G.Gatti, L.Marchese, H.O.Pastore: Langmuir26 (2010) 5791–5800. 20297832 10.1021/la903661qSearch in Google Scholar PubMed
[8] Y.Q.Zhang, S.J.Wang, J.W.Wang, L.L.Lou, C.Zhang, S.Liu: Solid State Sci.11 (2009) 1412–1418. 10.1016/j.solidstatesciences.2009.04.018Search in Google Scholar
[9] L.Dong, Q.Bo, W.Yan, L.Jian-hong, L.Rui-feng: J. Fuel Chem. Technol.38 (2010) 582–587.Search in Google Scholar
[10] Y.Xu, P.Yang, H.Zhang, Z.Deng: Synth. React. Inorganic, Met. Nano-Metal Chem.41 (2011) 1033–1038. 10.1080/15533174.2011.591340Search in Google Scholar
[11] V.Degirmenci, Ö.F.Erdem, A.Yilmaz, D.Michel, D.Uner: Catal. Lett.115 (2007) 79–85. 10.1007/s10562-007-9078-9Search in Google Scholar
[12] P.K.Pattnayak, K.M.Parida: J. Colloid Interf. Sci.226 (2000) 340–345. 10.1006/jcis.2000.6822Search in Google Scholar
[13] J.C.Yori, C.L.Pieck, J.M.Parera: Catal. Lett.52 (1998) 227–229. 10.1023/A:1019087923848Search in Google Scholar
[14] G.A.H.Mekhemer, H.M.Ismail: Colloids Surf., A 164 (2000) 227–235. 10.1016/S0927-7757(99)00370-2Search in Google Scholar
[15] J.M.Hernández Enríquez, L.A.Cortez Lajas, R.García Alamilla, A. CastilloMares, G. SandovalRobles, L.A.García Serrano: J. Alloys Compd.483 (2009) 425–428. 10.1016/j.jallcom.2008.08.094Search in Google Scholar
[16] J.M.H.Enríquez, L.A.C.Lajas, R.G.Alamilla, E.Á.S.Martín, G.P.Alamilla, E.B.Handy, G.C.Galindo, L.A.G.Serrano: J. Met.3 (2013) 34–44. 10.4236/ojmetal.2013.33006Search in Google Scholar
[17] G.A.H.Mekhemer: Colloids Surf., A 141 (1998) 227–235. 10.1016/S0927-7757(98)00344-6Search in Google Scholar
[18] L.Ma, I.Jia, X.Guo, L.Xiang: Chinese J. Catal.35 (2014) 108–119. 10.1016/S1872Search in Google Scholar
[19] K.M.Parida, P.K.Pattnayak: J. Coll.182 (1996) 381–387. 10.1006/jcis.1996.0477Search in Google Scholar
[20] M.C.Lee, S. BinSeo, J.H.Chung, Y.J.Joo, D.H.Ahn: Fuel87 (2008) 2162–2167. 10.1016/j.fuel.2007.11.017Search in Google Scholar
[21] F.S.Ramos, A.M.D.D.Farias, L.E.P.Borges, J.L.Monteiro, M.A.Fraga, E.F.Sousa-Aguiar, L.G.Appl: Catal. Today101 (2005) 39–44. 10.1016/j.cattod.2004.12.007Search in Google Scholar
[22] M.Xu, J.H.Lunsford, D.W.Goodman, A.Bhattacharyya: Appl. Catal., A 149 (1997) 289–301. 10.1016/S0926-860X(96)00275-XSearch in Google Scholar
[23] J.Fei, Z.Hou, B.Zhu, H.Lou, X.Zheng: Appl. Catal., A 304 (2006) 49–54. 10.1016/j.apcata.2006.02.019Search in Google Scholar
[24] Y.Fu, T.Hong, J.Chen, A.Auroux, J.Shen: Thermochim. Acta434 (2005) 22–26. 10.1016/j.tca.2004.12.023Search in Google Scholar
[25] Y.Tang, E.Zong, H.Wan, Z.Xu, S.Zheng, D.Zhu: Micropor. Mesopor. Mater.155 (2012) 192–200. 10.1016/j.micromeso.2012.01.020Search in Google Scholar
[26] J.Zhang, Z.Ma, J.Jiao, H.Yin, W.Yan, E.W.Hagaman, J.Yu, S.Dai: Micropor. Mesopor. Mater.129 (2010) 200–209. 10.1016/j.micromeso.2009.09.016Search in Google Scholar
[27] K.Cruz-Rodríguez, R.García-Alamilla, C.E.Ramos-Galván, F.Paraguay-Delgado, R.Silva-Rodrigo, B.E.Handy, S.Robles-Andrade: React. Kinet. Mech. Catal.20 (2017) 371–384. 10.1007/s11144-016-1108-4Search in Google Scholar
[28] J.A.C.Ruiz, D.M.A.Melo, J.R.Souza, L.O.Alcazar: Mater. Rer.5 (2002) 173–178. 10.1590/S1516-14392002000200014Search in Google Scholar
[29] L.Hermida, A.Z.Abdullah, A.R.Mohamed: J. Appl. Sci.10 (2010) 3199–3206. 10.3923/jas.2010.3199.3206Search in Google Scholar
[30] A.S.Cattaneo, C.Ferrara, D.C.Villa, S.Angioni, C.Milanese, D.Capsoni, S.Grandi, P.Mustarelli, V.Allodi, G.Mariotto, S.Brutti, E.Quartarone: Micropor. Mesopor. Mater.219 (2016) 219–229. 10.1016/j.micromeso.2015.08.011Search in Google Scholar
[31] Z.Sun, Z.Liu, L.Xu, Y.Yang, Y.He: Stud. Surf. Sci. Catal.154 (2004) 1060–1064. 10.1016/S0167-2991(04)80925-XSearch in Google Scholar
[32] F.Abbattista, A.Delmastro, G.Gozzelino, D.Mazza, M.Vallino, G.Busca, V.Lorenzelli: J. Chem. Soc. Faraday Trans.86 (1990) 3653. 10.1039/ft9908603653Search in Google Scholar
[33] N.Chandra, D.K.Singh, M.Sharma, R.K.Upadhyay, S.S.Amritphale, S.K.Sanghi: J. Colloid Interface Sci.342 (2010) 327–332. 19942226 10.1016/j.jcis.2009.10.065Search in Google Scholar
[34] D.Zhao, J.Feng, Q.Huo, N.Melosh, G.H.Fredrickson, B.F.Chmelka, G.D.Stucky: Science279 (1998) 548–52. 9438845 10.1126/science.279.5350.548Search in Google Scholar
[35] I.Eswaramoorthi, A.K.Dalai: Int. J. Hydrogen Energy34 (2009) 2580–2590. 10.1016/j.ijhydene.2009.01.029Search in Google Scholar
[36] H.Mao, X.Lu, M.Li, J.Yang, B.Li: Appl. Surf. Sci.276 (2013) 787–795. 10.1016/j.apsusc.2013.03.172Search in Google Scholar
[37] R.S.Araújo, D.A.S.Maia, D.C.S.Azevedo, C.L.Cavalcante, E.Rodríguez-Castellón, A.Jimenez-Lopez: Appl. Surf. Sci.255 (2009) 6205–6209. 10.1016/j.apsusc.2009.01.076Search in Google Scholar
[38] W.Hua, Y.Yue, Z.Gao: J. Mol. Catal. A Chem.170 (2001) 195–202. 10.1016/S1381-1169(01)00063-2Search in Google Scholar
[39] Y.Wang, H.Liu, H.Zhang, W.Ying: React. Kinet. Mech. Catal.119 (2016) 585–594. 10.1007/s11144-016-1063-0Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Statistical analysis of micropore size distributions in Al–Si castings evaluated by X-ray computed tomography
- Effect of processing parameters on the microstructural and mechanical properties of aluminum–carbon nanotube composites produced by spark plasma sintering
- Synthesis of ZnO nanomaterials with different morphologies by hydrothermal method
- Dielectric studies of CCTO-based nanocomposite ceramic synthesized by a solid state route
- Effect of laser forming on mechanical properties of multiple-phase steels by using a thermal–microstructure–mechanical model
- Effect of temper rolling and subsequent annealing on texture development and magnetic permeability of semi-processed electrical steel with 2.3 wt.% Si
- Compressive behavior of double-layered functionally graded 316L stainless steel foam
- Microstructure and mechanical behavior of Mg–Y–Zn alloys with respect to varying content of LPSO phase
- Microstructural evolution of semi-solid A356 alloy during reheating
- Lewis–Br⊘nsted induction acidity in SBA-15 modified with Zr and P
- Short Communications
- Nanophase formation during the heat treatment of Al-13Si-5Cu-2Ni-1Mg alloy and the abnormal enhancement of its tensile properties
- Effect of minor Nd substitution for Y on microstructure and corrosion resistance of extruded Mg–Zn–Y alloy
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Statistical analysis of micropore size distributions in Al–Si castings evaluated by X-ray computed tomography
- Effect of processing parameters on the microstructural and mechanical properties of aluminum–carbon nanotube composites produced by spark plasma sintering
- Synthesis of ZnO nanomaterials with different morphologies by hydrothermal method
- Dielectric studies of CCTO-based nanocomposite ceramic synthesized by a solid state route
- Effect of laser forming on mechanical properties of multiple-phase steels by using a thermal–microstructure–mechanical model
- Effect of temper rolling and subsequent annealing on texture development and magnetic permeability of semi-processed electrical steel with 2.3 wt.% Si
- Compressive behavior of double-layered functionally graded 316L stainless steel foam
- Microstructure and mechanical behavior of Mg–Y–Zn alloys with respect to varying content of LPSO phase
- Microstructural evolution of semi-solid A356 alloy during reheating
- Lewis–Br⊘nsted induction acidity in SBA-15 modified with Zr and P
- Short Communications
- Nanophase formation during the heat treatment of Al-13Si-5Cu-2Ni-1Mg alloy and the abnormal enhancement of its tensile properties
- Effect of minor Nd substitution for Y on microstructure and corrosion resistance of extruded Mg–Zn–Y alloy
- DGM News
- DGM News