Home Technology Compressive behavior of double-layered functionally graded 316L stainless steel foam
Article
Licensed
Unlicensed Requires Authentication

Compressive behavior of double-layered functionally graded 316L stainless steel foam

  • Morteza Mirzaei and Mohammad Hossein Paydar
Published/Copyright: October 3, 2018

Abstract

In this study, double-layer structured 316L stainless steel foam is fabricated through a layer by layer space holder method. The fabricated foams contain uniform pore distribution and can be categorized as body centered cubic crystal structures. Each sample is made of two layers in the axial direction. To induce 51 vol.% and 62 vol.% porosity in the first and the second layers, 1.7 to 2.0 mm and 2.0 to 2.4 mm spherical carbamide particles are used, respectively. In this study, the effect of the height of each layer on the compressive behavior of the fabricated foams is investigated in detail. The results indicate that compressive deformation of the double-layered foams starts from the high porosity (62 vol.%) layer and then shifts to the low porosity (51 vol.%) layer. Deformation of the double-layered 316L foams demonstrates two plateau regions, whose lengths depend on the heights of the low and high porosity layers.


*Correspondence address, Prof. Mohammad Hossein Paydar, Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran, Tel.: +989177168020, E-mail:

References

[1] Y.Hangai, Y.Oba, S.Koyama, T.Utsunomiya: Metall. Mater. Trans.A 42 (2011) 35853589. 10.1007/s11661-011-0944-0Search in Google Scholar

[2] J.Yang, S.Wang, Y.Ding, Z.Zheng, J.Yu: Mater. Sci. Eng.A680 (2017) 411420. 10.1016/j.msea.2016.11.010Search in Google Scholar

[3] J.Zhang, Z.Wang, L.Zhao: Compos. Part B-Eng.85 (2015) 176187. 10.1016/j.compositesb.2015.09.045Search in Google Scholar

[4] S.Kitipornchai, D.Chen, J.Yang: Mater. Des.116 (2017) 656665. 10.1016/j.matdes.2016.12.061Search in Google Scholar

[5] Y.Hangai, T.Morita, S.Koyama, O.Kuwazuru, N.Yoshikawa: J. Mater. Eng. Perform.25 (2016) 36913696. 10.1007/s11665-016-2218-xSearch in Google Scholar

[6] Y.Torres, P.Trueba, J.J.Pavón, E.Chicardi, P.Kamm, F.García-Moreno, J.A.Rodríguez-Ortiz: Mater. Des.110 (2016) 179187. 10.1016/j.matdes.2016.07.135Search in Google Scholar

[7] M.Liu, Y.Cheng, J.Liu: Compos. Part B-Eng.72 (2015) 97107. 10.1016/j.compositesb.2014.11.037Search in Google Scholar

[8] A.H.Brothers, D.C.Dunand: Mater. Sci. Eng.A 489 (2008) 439443. 10.1016/j.msea.2007.11.076Search in Google Scholar

[9] J.J.Pavón, P.Trueba, J.A.Rodríguez-Ortiz, Y.Torres: J. Mater. Sci.50 (2015) 61036112. 10.1007/s10853-015-9163-1Search in Google Scholar

[10] Y.Hangai, T.Utsunomiya: Metall. Mater. Trans.A 40 (2009) 275277. 10.1007/s11661-008-9733-9Search in Google Scholar

[11] Y.Hangai, K.Takahashi, R.Yamaguchi, T.Utsunomiya, S.Kitahara: Mater. Sci. Eng.A 556 (2012) 678684. 10.1016/j.msea.2012.07.047Search in Google Scholar

[12] N.Bekoz, E.Oktay: J. Mater. Process. Technol.212 (2012) 21092116. 10.1016/j.jmatprotec.2012.05.015Search in Google Scholar

[13] Y.H.Li, F.Wang, J.J.Li: Int. J. Mater. Res.108 (2017) 619624. 10.3139/146.111526Search in Google Scholar

[14] K.Nishiyabu, S.Matsuzaki, S.Tanaka: Adv. with Sandw. Struct. Mater. Des. (2005) 733742. 10.1007/1-4020-3848-8_74Search in Google Scholar

[15] N.Bekoz, E.Oktay: Mater. Sci. Eng.A 576 (2013) 8290. 10.1016/j.msea.2013.04.009Search in Google Scholar

[16] I.Mutlu, E.Oktay: J. Porous Mater.19 (2012) 433440. 10.1007/s10934-011-9491-8Search in Google Scholar

[17] D. rongTian, Y. huaPang, L.Yu, L.Sun: Int. J. Miner. Metall. Mater.23 (2016) 793798. 10.1007/s12613-016-1293-1Search in Google Scholar

[18] S.Singh, N.Bhatnagar: J. Porous Mater. (2017) 118. 10.1007/s10934-017-0467-1Search in Google Scholar

[19] M.Mirzaei, M.H.Paydar: Mater. Des.121 (2017) 442449. 10.1016/j.matdes.2017.02.069Search in Google Scholar

[20] H.I.Bakan, D.Heaney, R.M.German: Powder Metall.44 (2001) 235242. 10.1179/003258901666392Search in Google Scholar

[21] H.Bakan: Scr. Mater.55 (2006) 203206. 10.1016/j.scriptamat.2006.03.039Search in Google Scholar

[22] M.Alizadeh, M.Mirzaei-Aliabadi: Mater. Des.35 (2012) 419424. 10.1016/j.matdes.2011.09.059Search in Google Scholar

[23] L.J.Gibson, M.F.Ashby: Cellular solids: structure and properties, Cambridge University Press, 1999.Search in Google Scholar

[24] M.F.Ashby: Metal foams: a design guide, Butterworth-Heinemann, 2000.Search in Google Scholar

[25] Q.M.Li, I.Magkiriadis, J.J.Harrigan: J. Cell. Plast.42 (2006) 371392. 10.1177/0021955X06063519Search in Google Scholar

[26] J.C.Qiao, Z.P.Xi, H.P.Tang, J.Y.Wang, J.L.Zhu: Mater. Trans.49 (2008) 29192921. 10.2320/matertrans.MEP2008322Search in Google Scholar

[27] U.Ramamurty, A.Paul: Acta Mater.52 (2004) 869876. 10.1016/j.actamat.2003.10.021Search in Google Scholar

[28] E.Koza, M.Leonowicz, S.Wojciechowski, F.Simancik: Mater. Lett.58 (2004) 132135. 10.1016/S0167-577X(03)00430-0Search in Google Scholar

Received: 2018-02-09
Accepted: 2018-04-25
Published Online: 2018-10-03
Published in Print: 2018-10-16

© 2018, Carl Hanser Verlag, München

Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.111689/html
Scroll to top button