The superplasticity of friction stir processed Al-5Mg alloy with additions of scandium and zirconium
-
Anton Smolej
Abstract
The paper describes the effect of minor additions of scandium and zirconium on the superplastic behaviour of friction stir processed Al-5Mg based alloy. The measurements included the flow curves and tensile elongations of (in wt.%) Al-5Mg-0.1Zr, Al-5Mg-0.2Sc, and Al-5Mg-0.2Sc-0.15Zr alloys at initial strain rates ranging from 1 × 10−3 to 1 × 10−1 s−1, and at forming temperatures from 350 to 500°C. The inclusion of friction stir processing at tool rotation rates of 95 and 475 rpm considerably enhanced the superplastic behaviour of the Al-5Mg-0.2Sc-0.15Zr alloy, which was reflected in elongations without failure of over 1900%. Other friction stir processed alloys, treated at lower tool rotation rates, did not achieve superplasticity due to abnormal grain growth. The results yielded by the friction stir processed alloys are compared with the superplastic behaviour of the same alloys produced conventionally by cold rolling.
References
[1] J.S.Vetrano, C.A.Lavender, C.H.Hamilton, M.T.Smith, S.M.Bruemmer: Scr. Metall. Mater.30 (1994) 565. 10.1016/0956-716X(94)90430-8Search in Google Scholar
[2] R.Verma, A.K.Gosh, S.Kim, C.Kim: Mater. Sci. Eng.A191 (1995) 143. 10.1016/0921-5093(94)09622-4Search in Google Scholar
[3] H.Iwasaki, H.Hosokawa, T.Mori, T.Tagata, K.Higashi: Mater. Sci. Eng.A252 (1998) 199. 10.1016/S0921-5093(98)00678-9Search in Google Scholar
[4] P.A.Friedman, W.B.Copple: J. Mater. Eng. Perform.13 (2004) 335. 10.1361/10599490419162Search in Google Scholar
[5] M.A.Kulas, P.E.Krajewski, J.R.Bradley, E.M.Taleff: J.Mater. Eng. Perform.16 (2007) 308. 10.1007/s11665-007-9057-Search in Google Scholar
[6] T.G.Langdon: Mater. Trans. JIM40 (1999) 1320. 10.2320/matertrans1989.40.716Search in Google Scholar
[7] C.Hsiao, J.C.Huang: Metall. Mater. Trans.33 A (2002) 1373. 10.1007/s11661-002-0062-0Search in Google Scholar
[8] T.G.Langdon: Mater. Trans. JIM40 (1999) 716. 10.2320/matertrans1989.40.716Search in Google Scholar
[9] Z.Horita, M.Furukawa, M.Nemoto, A.J.Barnes, T.G.Langdon: Acta Mater.48 (2000) 3633. 10.1016/S1359-6454(00)00182-8Search in Google Scholar
[10] Z.Horita, M.Furukawa, M.Nemoto, T.G.Langdon: Mater. Sci. Technol.16 (2000) 1239. 10.1179/026708300101507091Search in Google Scholar
[11] S.Komura, Z.Horita, M.Furukawa, M.Nemoto, T.G.Langdon: Metall. Mater. Trans.A32 (2001) 707. 10.1007/s11661-001-0087-9Search in Google Scholar
[12] M.Kawasaki, R.B.Figueiredo, C.Xu, T.G.Langdon: Metall. Mater. Trans.A38 (2007) 1891. 10.1007/s11661-006-9000-xSearch in Google Scholar
[13] T.G.Langdon: J. Mater. Sci.42 (2007) 3388. 10.1007/s10853-006-1475-8Search in Google Scholar
[14] E.Avtokratova, O.Sitdikov, M.Markushev, R.Mulyukov: Mater. Sci. Eng.A538 (2012) 386. 10.1016/j.msea.2012.01.041Search in Google Scholar
[15] Z.Horita, T.G.Langdon: Scr. Mater.58 (2008) 1029. 10.1016/j.scriptamat.2008.01.043Search in Google Scholar
[16] N.Tsuji, K.Shiotsuki, Y.Saito: Mater. Trans. JIM40 (1999) 765. 10.2320/matertrans1989.40.765Search in Google Scholar
[17] R.S.Mishra, Z.Y.Ma: Mater. Sci. Eng. R50 (2005) 1. 10.1016/j.mser.2005.07.001Search in Google Scholar
[18] R.S.Mishra, M.W.Mahoney, in: R.S.Mishra, M.W.Mahoney (Eds.) Friction Stir Welding and Processing, Materials Park, OH, ASM International (2007) 309.Search in Google Scholar
[19] R.R.Sawtell, G.L.Jansen: Metall. Trans.A21 (1990) 421. 10.1007/BF02782422Search in Google Scholar
[20] T.G.Nieh, L.M.Hsiung, J.Wadsworth, R.Kaibyshev: Acta Mater.46 (1998) 2789. 10.1016/S1359-6454(97)00452-7Search in Google Scholar
[21] M.Furukawa, A.Utsunomiya, K.Matsubara, Z.Horita, T.L.Langdon: Acta Mater.49 (2001) 3829. 10.1016/S1359-6454(01)00262-2Search in Google Scholar
[22] F.Musin, R.Kaibyshev, Y.Motohashi, G.Itoh: Metall. Mater. Trans.A35 (2004) 2383. 10.1007/s11661-006-0218-4Search in Google Scholar
[23] A.Smolej, B.Skaza, V.Dragojević: J. Mater. Eng. Perform.19 (2010) 221. 10.1007/s11665-009-9450-6Search in Google Scholar
[24] Z.Y.Ma, M.S.Mishra, M.W.Mahoney, R.Grimes: Mater. Sci. Eng.A351 (2003) 148. 10.1016/S0921-5093(02)00824-9Search in Google Scholar
[25] S.Lee, A.Utsunomiya, H.Akamatsu, K.Neishi, M.Furukawa, Z.Horita, T.G.Langdon: Acta Mater.50 (2002) 553. 10.1016/S1359-6454(01)00368-8Search in Google Scholar
[26] Y.Peng, Z.Yin, B.Nie, L.Zhong: Trans. Nonferr. Met. Soc. China17 (2007) 744. 10.1016/S1003-6326(07)60167-8Search in Google Scholar
[27] A.Smolej, D.Klobčar, B.Skaza, A.Nagode, E.Slaček, V.Dragojević, S.Smolej: Mater. Sci. Eng.A590 (2014) 421. 10.1016/j.msea.2013.10.027Search in Google Scholar
[28] Z.Y.Ma, F.C.Lui, R.S.Mishra: Acta Mater.58 (2010) 4693. 10.1016/j.actamat.2009.10.059Search in Google Scholar
[29] W.M.Thomas, E.D.Nicholas, J.C.Needham, M.G.Murch, P.Templesmith, G.J.Dawes: GB Patent Application No. 9125978.8 (1991).Search in Google Scholar
[30] F.C.Lui, Z.Y.Ma: Scr. Mater.58 (2008) 667. 10.1016/j.scriptamat.2007.11.044Search in Google Scholar
[31] R.S.Mishra, M.W.Mahoney, S.X.McFadden, N.A.Mara, A.K.Mukherjee: Scr. Mater.42 (2000) 163. 10.1016/S1359-6462(99)00329-2Search in Google Scholar
[32] Z.Y.Ma, R.S.Mishra, M.W.Mahoney: Acta Mater.50 (2002) 4419. 10.1016/S1359-6454(02)00261-6Search in Google Scholar
[33] I.Charit, R.S.Mishra: Mater. Sci. Eng.A359 (2003) 290. 10.1016/S0921-5093(03)00367-8Search in Google Scholar
[34] I.Charit, R.S.Mishra, M.W.Mahoney: Scr. Mater.47 (2002) 631. 10.1016/S1359-6462(02)00257-9Search in Google Scholar
[35] S.Jana, R.S.Mishra, J.A.Baumann, G.Grant: Mater. Sci. Eng.A528 (2010) 189. 10.1016/j.msea.2010.08.049Search in Google Scholar
[36] I.Charit, R.S.Mishra: Acta. Mater.53 (2005) 4211. 10.1016/j.actamat.2005.05.021Search in Google Scholar
[37] M.A.Garcia-Bermal, R.S.Mishra, R.Verma, D.Hernándes-Silva: Scr. Mater.60 (2009) 850. 10.1016/j.scriptamat.2009.01.030Search in Google Scholar
[38] I.Charit, R.S.Mishra: J. Mater. Res.19 (2004) 3329. 10.1557/JMR.2004.0429Search in Google Scholar
[39] Z.Y.Ma, R.S.Mishra: Scr. Mater.53 (2005) 75. 10.1016/j.scriptamat.2005.03.018Search in Google Scholar
[40] Z.Y.Ma, R.S.Mishra, M.W.Mahoney: Metall. Mater. Trans.A36 (2005) 1447. 10.1007/s11661-005-0237-6Search in Google Scholar
[41] F.C.Lui, Z.Y.Ma, I.Q.Chen: Scr. Mater.60 (2009) 968. 10.1016/j.scriptamat.2009.02.021Search in Google Scholar
[42] F.C.Lui, Z.Y.Ma: Scr. Mater.59 (2008) 882. 10.1016/j.scriptamat.2008.06.035Search in Google Scholar
[43] R.S.Mishra: Adv. Mater. Process.162 (2004) 45.Search in Google Scholar
[44] Z.Y.Ma, A.L.Pilchak, M.C.Juhas, J.C.Williams: Scr. Mater.58 (2008) 361. 10.1016/j.scriptamat.2007.09.009Search in Google Scholar
[45] I.Charit, R.S.Mishra: Scr. Mater.58 (2008) 367. 10.1016/j.scriptamat.2007.09.052Search in Google Scholar
[46] P.B.Barbon, S.Komura, A.Utsonomiya, Z.Horita, M.Furukawa, M.Nemoto, T.G.Langdon: Mater. Trans. JIM40 (1999) 772. 10.2320/matertrans1989.40.772Search in Google Scholar
[47] Z.Y.Ma, R.S.Mishra: Acta Mater.51 (2003) 3551. 10.1016/S1359-6454(03)00173-3Search in Google Scholar
[48] S.Fujikawa: J. Japan. Inst. Metals.49 (1999) 128. 10.2464/jilm.49.128Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- On the orientation dependence of grain boundary triple line energy in Cu
- Hydrogen storage kinetics of as-cast and spun (Mg24Ni10Cu2)100–xNdx (x = 0–20) alloys
- Segregation of phosphorus to ferrite grain boundaries during transformation in an Fe–P alloy
- A study on the pseudoelasticity of low temperature aged and thermomechanically treated Ti-51.5 at.% Ni shape memory alloy
- Experimental determination and thermodynamic calculation of the phase equilibria in the Co–Mn–Ta system
- 800°C isothermal section of the Co–Cr–Mo–Si quaternary system
- Phase fraction mapping in the as-cast microstructure of extrudable 6xxx aluminum alloys
- Effect of thixoforming on morphological changes in iron-bearing intermetallics and mechanical properties of Al–Si–Cu alloys
- The superplasticity of friction stir processed Al-5Mg alloy with additions of scandium and zirconium
- Short Communications
- Anti-corrosion behaviour of VE/GF coatings on mild steel
- Intermetallic phase stabilized Al/Pb metallic emulsion
- Synthesis of ultrafine powder (W,Ti)C by microwave heating in a stream of argon
- Fabrication and properties of porous silicon nitride ceramics via microwave sintering
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- On the orientation dependence of grain boundary triple line energy in Cu
- Hydrogen storage kinetics of as-cast and spun (Mg24Ni10Cu2)100–xNdx (x = 0–20) alloys
- Segregation of phosphorus to ferrite grain boundaries during transformation in an Fe–P alloy
- A study on the pseudoelasticity of low temperature aged and thermomechanically treated Ti-51.5 at.% Ni shape memory alloy
- Experimental determination and thermodynamic calculation of the phase equilibria in the Co–Mn–Ta system
- 800°C isothermal section of the Co–Cr–Mo–Si quaternary system
- Phase fraction mapping in the as-cast microstructure of extrudable 6xxx aluminum alloys
- Effect of thixoforming on morphological changes in iron-bearing intermetallics and mechanical properties of Al–Si–Cu alloys
- The superplasticity of friction stir processed Al-5Mg alloy with additions of scandium and zirconium
- Short Communications
- Anti-corrosion behaviour of VE/GF coatings on mild steel
- Intermetallic phase stabilized Al/Pb metallic emulsion
- Synthesis of ultrafine powder (W,Ti)C by microwave heating in a stream of argon
- Fabrication and properties of porous silicon nitride ceramics via microwave sintering
- DGM News
- Personal