Hydrogen storage kinetics of as-cast and spun (Mg24Ni10Cu2)100–xNdx (x = 0–20) alloys
-
Yanghuan Zhang
, Tai Yang , Tingting Zhai , Zeming Yuan , Xiaoping Dong und Dongliang Zhao
Abstract
(Mg24Ni10Cu2)100–xNdx (x = 0, 5, 10, 15, and 20) alloys with nanocrystalline and amorphous structures were prepared by melt-spinning. X-ray diffraction and high-resolution transmission electron microscopy reveal that the as-spun Nd-free alloy displays an entirely nanocrystalline structure, whereas the as-spun Nd15 alloy, differing from Nd0 alloy, exhibits nanocrystals embedded in an amorphous matrix. This suggests that the addition of Nd facilitates the amorphous formation ability of the alloys. Melt spinning significantly improves the gaseous and electrochemical hydrogen storage kinetics of the alloys. Furthermore, melt spinning enhances the diffusion ability of hydrogen atoms in the alloy, but it impairs the charge-transfer reaction on the surface of the alloy electrode, which gives rise to the high-rate dischargeability of the alloy electrode, first mounting up and then going down with the increase in spinning rate.
References
[1] J.C.Crivello, T.Nobuki, T.Kuji: Int. J. Hydrogen Energy34 (2009) 1937. 10.1016/j.ijhydene.2008.11.039Suche in Google Scholar
[2] A.Ebrahimi-Porkani, S.F.Kashani-Bozorg: J. Alloys Compd.456 (2008) 211. 10.1016/j.jallcom.2007.02.003Suche in Google Scholar
[3] D.Chandra, A.Sharma, R.Chellappa, W.N.Cathey, F.E.Lynch, R.C.BowmanJr., J.R.Wermer, S.N.Paglieri: J. Alloys Compd.452 (2008) 312. 10.1016/j.jallcom.2006.11.078Suche in Google Scholar
[4] L.Schlapbach, A.Züttel: Nature414 (2001) 353. 10.1038/35104634Suche in Google Scholar PubMed
[5] T.Spassov, L.Lyubenova, U.Köster, M.D.Baró: Mater. Sci. Eng.A375–377 (2004) 794. 10.1016/j.msea.2003.10.188Suche in Google Scholar
[6] Y.H.Zhang, B.W.Li, H.P.Ren, S.H.Guo, D.L.Zhao, X.L.Wang: Mater. Chem. Phys.124 (2010) 795. 10.1016/j.matchemphys.2010.07.064Suche in Google Scholar
[7] M.Anik, I.Akay, S.Topcu: Int. J. Hydrogen Energy34 (2009) 5449. 10.1016/j.ijhydene.2009.01.062Suche in Google Scholar
[8] M.Anik, H.Gasan, S.Topcu, I.Akay, N.Aydinbeyli: Int. J. Hydrogen Energy34 (2009) 2692. 10.1016/j.ijhydene.2009.01.062Suche in Google Scholar
[9] W.J.Song, J.S.Li, T.B.Zhang, X.J.Hou, H.C.Kou, X.Y.Xue, R.Hu: Trans. Nonferrous Met. Soc. China23 (2013) 3677–3684. 10.1016/S1003-6326(13)62425-5Suche in Google Scholar
[10] X.Zhao, S.M.Han, X.L.Zhu, B.Z.Liu, Y.Q.Liu: J. Solid State Chem.190 (2012) 68–72. 10.1016/j.jssc.2012.02.010Suche in Google Scholar
[11] M.S.Wu, H.R.Wu, Y.Y.Wang, C.C.Wan: J. Alloys Compd.302 (2000) 248. 10.1016/S0925-8388(99)00821-XSuche in Google Scholar
[12] B.Sakintuna, F.Lamari-Darkrim, M.Hirscher: Int. J. Hydrogen Energy32 (2007) 1121. 10.1016/j.ijhydene.2006.11.022Suche in Google Scholar
[13] A.Teresiak, A.Gebert, M.Savyak, M.Uhlemann, C.Mickel, N.Mattern: J. Alloys Compd.398 (2005) 156. 10.1016/j.jallcom.2005.03.003Suche in Google Scholar
[14] C.Rongeat, L.Roué: J. Power Sources132 (2004) 302. 10.1016/j.jpowsour.2003.12.049Suche in Google Scholar
[15] M.Y.Song, S.N.Kwon, J.S.Bae, S.H.Hong: Int. J. Hydrogen Energy33 (2008) 1711. 10.1016/j.ijhydene.2007.09.018Suche in Google Scholar
[16] S.Todorova, T.Spassov: J. Alloys Compd.469 (2009) 193. 10.1016/j.jallcom.2008.02.025Suche in Google Scholar
[17] G.Y.Liang, D.C.Wu, L.Li, L.J.Huang: J. Power Sources186 (2009) 528. 10.1016/j.jpowsour.2008.08.080Suche in Google Scholar
[18] Y.H.Zhang, D.L.Zhao, S.H.Guo, Y.Qi, Z.W.Wu, X.L.Wang: J. Alloys Compd.476 (2009) 457. 10.1016/j.jallcom.2008.08.044Suche in Google Scholar
[19] Y.H.Zhang, C.Zhao, T.Yang, H.W.Shang, C.Xu, D.L.Zhao: J. Alloys Compd.555 (2013) 131. 10.1016/j.jallcom.2012.12.016Suche in Google Scholar
[20] Y.H.Zhang, B.W.Li, H.P.Ren, F.Hu, G.F.Zhang, S.H.Guo: J. Alloys Compd.509 (2011) 5604. 10.1016/j.jallcom.2010.09.007Suche in Google Scholar
[21] Y.Wu, W.Han, S.X.Zhou, M.V.Lototsky, J.K.Solberg, V.A.Yartys: J. Alloys Compd.466 (2008) 176. 10.1016/j.jallcom.2007.11.045Suche in Google Scholar
[22] L.H.Kumar, B.Viswanathan, S.S.Murthy: J. Alloys Compd.461 (2008) 72. 10.1016/j.jallcom.2007.07.023Suche in Google Scholar
[23] X.Y.Zhao, Y.Ding, L.Q.Ma, L.Y.Wang, M.Yang, X.D.Shen: Int. J. Hydrogen Energy33 (2008) 6727. 10.1016/j.ijhydene.2007.09.022Suche in Google Scholar
[24] H.P.Ren, Y.H.Zhang, B.W.Li, D.L.Zhao, S.H.Guo, X.L.Wang: Int. J. Hydrogen Energy34 (2009) 1429. 10.1016/j.ijhydene.2008.11.082Suche in Google Scholar
[25] N.Cui, J.L.Luo: Int. J. Hydrogen Energy24 (1999) 37. 10.1016/S0360-3199(98)00026-3Suche in Google Scholar
[26] E.A.Lass: Int. J. Hydrogen Energy36 (2011) 10787. 10.1016/j.ijhydene.2011.05.137Suche in Google Scholar
[27] B.V.Ratnakumar, C.Witham, R.C.BowmanJr., A.Hightower, B.Fultz: J. Electrochem. Soc.143 (1996) 2578. 10.1149/1.1836541Suche in Google Scholar
[28] N.Kuriyama, T.Sakai, H.Miyamura, I.Uehara, H.Ishikawa, T.Iwasaki: J. Alloys Compd.202 (1993) 183. 10.1016/0925-8388(93)90538-XSuche in Google Scholar
[29] G.Zheng, B.N.Popov, R.E.White: J. Electrochem. Soc.142 (1995) 2695. 10.1149/1.2043853Suche in Google Scholar
[30] J.Kleperis, G.Wójcik, A.Czerwinski, J.Skowronski, M.Kopczyk, M.Beltowska-Brzezinska: J. Solid State Electrochem.5 (2001) 229. 10.1007/s100080000149Suche in Google Scholar
[31] K.Nobuhara, H.Kasai, W.A.Dino, H.Nakanishi: Surf. Sci.566–568 (2004) 703. 10.1016/j.susc.2004.06.003Suche in Google Scholar
[32] X.Y.Zhao, Y.Ding, M.Yang, L.Q.Ma: Int. J. Hydrogen Energy33 (2008) 81. 10.1016/j.ijhydene.2007.09.022Suche in Google Scholar
© 2014, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- On the orientation dependence of grain boundary triple line energy in Cu
- Hydrogen storage kinetics of as-cast and spun (Mg24Ni10Cu2)100–xNdx (x = 0–20) alloys
- Segregation of phosphorus to ferrite grain boundaries during transformation in an Fe–P alloy
- A study on the pseudoelasticity of low temperature aged and thermomechanically treated Ti-51.5 at.% Ni shape memory alloy
- Experimental determination and thermodynamic calculation of the phase equilibria in the Co–Mn–Ta system
- 800°C isothermal section of the Co–Cr–Mo–Si quaternary system
- Phase fraction mapping in the as-cast microstructure of extrudable 6xxx aluminum alloys
- Effect of thixoforming on morphological changes in iron-bearing intermetallics and mechanical properties of Al–Si–Cu alloys
- The superplasticity of friction stir processed Al-5Mg alloy with additions of scandium and zirconium
- Short Communications
- Anti-corrosion behaviour of VE/GF coatings on mild steel
- Intermetallic phase stabilized Al/Pb metallic emulsion
- Synthesis of ultrafine powder (W,Ti)C by microwave heating in a stream of argon
- Fabrication and properties of porous silicon nitride ceramics via microwave sintering
- DGM News
- Personal
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- On the orientation dependence of grain boundary triple line energy in Cu
- Hydrogen storage kinetics of as-cast and spun (Mg24Ni10Cu2)100–xNdx (x = 0–20) alloys
- Segregation of phosphorus to ferrite grain boundaries during transformation in an Fe–P alloy
- A study on the pseudoelasticity of low temperature aged and thermomechanically treated Ti-51.5 at.% Ni shape memory alloy
- Experimental determination and thermodynamic calculation of the phase equilibria in the Co–Mn–Ta system
- 800°C isothermal section of the Co–Cr–Mo–Si quaternary system
- Phase fraction mapping in the as-cast microstructure of extrudable 6xxx aluminum alloys
- Effect of thixoforming on morphological changes in iron-bearing intermetallics and mechanical properties of Al–Si–Cu alloys
- The superplasticity of friction stir processed Al-5Mg alloy with additions of scandium and zirconium
- Short Communications
- Anti-corrosion behaviour of VE/GF coatings on mild steel
- Intermetallic phase stabilized Al/Pb metallic emulsion
- Synthesis of ultrafine powder (W,Ti)C by microwave heating in a stream of argon
- Fabrication and properties of porous silicon nitride ceramics via microwave sintering
- DGM News
- Personal