Phase fraction mapping in the as-cast microstructure of extrudable 6xxx aluminum alloys
-
Panagiota I. Sarafoglou
und Gregory N. Haidemenopoulos
Abstract
The mapping of Mg2Si and β-AlFeSi phase fractions in the as-cast microstructure of Al–Mg–Si–Fe–Mn (6xxx series) alloys has been performed over the useful composition range (0–1.2 mass%) of the principal alloying elements Mg and Si. The calculations were based on the Scheil–Gulliver assumption of infinite diffusion in the liquid and limited diffusion in the solid state. The computed phase fractions were validated with experimental measurements of phase fractions. The mapping procedure allows the control of intermetallic phases in the as-cast microstructure, the minimization of the β-AlFeSi phase in particular, which is a significant prerequisite in obtaining enhanced extrudability, combined with high strength in this alloy series. Construction of maps for different levels of Mn has shown that addition of Mn could allow for higher alloying with Mg and Si, in order to obtain higher amounts of Mg2Si, without at the same time increasing the β-AlFeSi phase in the as-cast microstructure.
References
[1] Y.L.Liu, S.B.Kang: J. Mater. Sci.32 (1997) 1443–1447. 10.1023/A:1018545732009Suche in Google Scholar
[2] M.Cai, J.D.Robson, G.W.Lorimer, N.C.Parson: Mater. Sci. Forum396–402 (2002) 209–214. 10.4028/www.scientific.net/MSF.396-402.209Suche in Google Scholar
[3] N.C.W.Kuijpers: Kinetics of the β-AlFeSi to α-Al(FeMn)Si transformation in Al-Mg-Si alloys, Ph.D. Thesis, TU Delft, 2004.10.2320/matertrans.44.1448Suche in Google Scholar
[4] S.Onurlu, A.Tekin: J. Mater. Sci.29 (1994) 1652–1655. 10.1007/BF00368940Suche in Google Scholar
[5] H.Tanihata, T.Sugawara, K.Matsuda, S.Ikeno: J. Mater. Sci.34 (1999) 1205–1210. 10.1023/A:1004504805781Suche in Google Scholar
[6] O.Engler, Z.Liu, K.Kuhnke: J. Alloys Compd.560 (2013) 111–122. 10.1016/j.jallcom.2013.01.163Suche in Google Scholar
[7] O.Engler, G.Laptyeva, N.Wang: Mater. Charact.79 (2013) 60–75. 10.1016/j.matchar.2013.02.012Suche in Google Scholar
[8] N.C.W.Kuijpers, F.J.Vermolen, K.Vuik, S.van der Zwaag: Mater. Trans.44 (2003) 1448–1456. 10.2320/matertrans.44.1448Suche in Google Scholar
[9] G.N.Haidemenopoulos, H.Kamoutsi, A.D.Zervaki: J. Mater. Process. Technol.212 (2012) 2255–2260. 10.1016/j.jmatprotec.2012.06.026Suche in Google Scholar
[10] W.D.Fei, S.B.Kang: J. Mater. Sci. Lett.14 (1995) 1795–1797. 10.1007/BF00271010Suche in Google Scholar
[11] A.Verma, S.Kumar, P.S.Grant, K.A.Q.O'Reilly: J. Alloys Compd.55 (2013) 274–282. 10.1016/j.jallcom.2012.12.077Suche in Google Scholar
[12] G.Mrowka-Nowotnik, J.Sieniawski, M.Wierzbinska: Arch. Mater. Sci. Eng.28 (2007) 69–76.Suche in Google Scholar
[13] A.Wimmer, J.Lee, P.Schumacher: Berg- Huttenmann. Monatsh.157 (2012) 301–305. 10.1007/s00501-012-0034-7Suche in Google Scholar
[14] J.O.Andersson, T.Helander, L.Höglund, P.Shi, B.Sundman: Calphad26 (2002) 273–312. 10.1016/S0364-5916(02)00037-8Suche in Google Scholar
[15] H.L.Lukas, S.G.Fries, B.Sundman: Computational thermodynamics, the Calphad method, Cambridge University Press (2007). 10.1017/CBO9780511804137Suche in Google Scholar
[16] J.Ansara, A.T.Dinsdale, M.H.Rand: COST 507 Thermochemical database for light metal alloys, European Community publication 2, EUR18449 (1991).Suche in Google Scholar
[17] Y.Du, Y.A.Chang, S.D.Liu, B.Y.Huang, F.Y.Xie, Y.Yang, S.L.Chen: Z. Metallkd.96 (2005) 1351–1362. 10.3139/146.101185Suche in Google Scholar
[18] J.Lacaze, L.Eleno, B.Sundman: Metall. Mater. Trans.A41 (2010) 2208–2215. 10.1007/s11661-010-0263-xSuche in Google Scholar
[19] G.Sha, K.A.Q.O'Reilly, B.Cantor, J.M.Titchmarsh, R.G.Hamerton: Acta Mater.51 (2003) 1883–1897. 10.1016/S1359-6454(02)00595-5Suche in Google Scholar
[20] T.Smith, K.A.Q.O'Reilly, S.Kumar, I.Stone: Metall. Mater. Trans.A44 (2013) 4866–4871. 10.1007/s11661-013-1934-1Suche in Google Scholar
[21] M.Wu, A.Ludwig: Metall. Mater. Trans.A38 (2007) 1465–1475. 10.1007/s11661-007-9175-9Suche in Google Scholar
[22] M.Wu, J.Li, A.Ludwig, A.Kharicha: Comput. Mater. Sci.79 (2013) 830–840. 10.1016/j.commatsci.2013.05.015Suche in Google Scholar PubMed PubMed Central
[23] A.Borgenstam, L.Höglund, J.Ågren, A.Engström: J. Phase Equilib.21 (2000) 269–280. 10.1361/105497100770340057Suche in Google Scholar
[24] ASTM E-562 Specification, Standard Test Method for Determing Volume Fraction by Systematic Manual Point Count, American Society for Testing and Materials, PA, USA (2003).Suche in Google Scholar
[25] J.W.Rayleigh: Philos. Mag.34 (1892) 481–502. 10.1080/14786449208620364Suche in Google Scholar
[26] W.Zhang, Y.Du, Y.Peng, G.Wen, S.Wang: Int. J. Refract. Met. Hard Mater.104 (2013) 721–735.Suche in Google Scholar
[27] L.F.Mondolfo: Aluminum Alloys: Structure and Properties, Butterworths, London-Boston (1976). 10.1016/B978-0-408-70932-3.50032-2Suche in Google Scholar
[28] M.Warmuzek, K.Rabczak, J.Sieniawski: J. Mater. Process. Technol.175 (2006) 421–426. 10.1016/j.jmatprotec.2005.04.005Suche in Google Scholar
[29] Y.L.Liu, S.B.Kang, H.W.Kim: Mater. Lett.41 (1999) 267–272. 10.1016/S0167-577X(99)00141-XSuche in Google Scholar
[30] Y.Birol: Mater. Charact.73 (2012) 37–42. 10.1016/j.matchar.2012.07.015Suche in Google Scholar
© 2014, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- On the orientation dependence of grain boundary triple line energy in Cu
- Hydrogen storage kinetics of as-cast and spun (Mg24Ni10Cu2)100–xNdx (x = 0–20) alloys
- Segregation of phosphorus to ferrite grain boundaries during transformation in an Fe–P alloy
- A study on the pseudoelasticity of low temperature aged and thermomechanically treated Ti-51.5 at.% Ni shape memory alloy
- Experimental determination and thermodynamic calculation of the phase equilibria in the Co–Mn–Ta system
- 800°C isothermal section of the Co–Cr–Mo–Si quaternary system
- Phase fraction mapping in the as-cast microstructure of extrudable 6xxx aluminum alloys
- Effect of thixoforming on morphological changes in iron-bearing intermetallics and mechanical properties of Al–Si–Cu alloys
- The superplasticity of friction stir processed Al-5Mg alloy with additions of scandium and zirconium
- Short Communications
- Anti-corrosion behaviour of VE/GF coatings on mild steel
- Intermetallic phase stabilized Al/Pb metallic emulsion
- Synthesis of ultrafine powder (W,Ti)C by microwave heating in a stream of argon
- Fabrication and properties of porous silicon nitride ceramics via microwave sintering
- DGM News
- Personal
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- On the orientation dependence of grain boundary triple line energy in Cu
- Hydrogen storage kinetics of as-cast and spun (Mg24Ni10Cu2)100–xNdx (x = 0–20) alloys
- Segregation of phosphorus to ferrite grain boundaries during transformation in an Fe–P alloy
- A study on the pseudoelasticity of low temperature aged and thermomechanically treated Ti-51.5 at.% Ni shape memory alloy
- Experimental determination and thermodynamic calculation of the phase equilibria in the Co–Mn–Ta system
- 800°C isothermal section of the Co–Cr–Mo–Si quaternary system
- Phase fraction mapping in the as-cast microstructure of extrudable 6xxx aluminum alloys
- Effect of thixoforming on morphological changes in iron-bearing intermetallics and mechanical properties of Al–Si–Cu alloys
- The superplasticity of friction stir processed Al-5Mg alloy with additions of scandium and zirconium
- Short Communications
- Anti-corrosion behaviour of VE/GF coatings on mild steel
- Intermetallic phase stabilized Al/Pb metallic emulsion
- Synthesis of ultrafine powder (W,Ti)C by microwave heating in a stream of argon
- Fabrication and properties of porous silicon nitride ceramics via microwave sintering
- DGM News
- Personal