Startseite Technik On the orientation dependence of grain boundary triple line energy in Cu
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the orientation dependence of grain boundary triple line energy in Cu

  • Bingbing Zhao , Lasar Shvindlerman und Günter Gottstein
Veröffentlicht/Copyright: 5. Dezember 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Triple lines are the lines of intersection of three interfaces, either external interfaces or internal interfaces of a bulk material. They have been recognized as important microstructural features with specific kinetic and thermodynamic properties. Utilizing atomic force microscopy, the line tensions, i.e. the energy of grain boundary-free surface triple lines and grain boundary triple junctions for different crystallographic systems in copper were determined. The line tension of grain boundary triple junctions in copper was found to be positive and of the order of 10−9 J m−1. Junctions including low energy boundaries, twin boundaries and low angle boundaries revealed a substantially lower line tension than triple junctions comprised only of random high angle boundaries. A simple model based on a constant grain boundary energy density is proposed to account for the orientation dependence of triple line energy.


* Correspondence address, Dr.-Ing. Bingbing Zhao, Institut für Metallkunde und Metallphysik, RWTH Aachen University, Kopernikusstr. 14, 52074 Aachen, Germany, Tel: +49-241-80 2 68 93, Fax: +49-241-80 22 30 1, E-mail:

References

[1] U.Czubayko, V.G.Sursaeva, G.Gottstein, L.S.Shvindlerman: Acta Mater.46 (1998) 5863. 10.1016/S1359-6454(98)00241-9Suche in Google Scholar

[2] M.Upmanyu, D.J.Srolovitz, L.S.Shvindlerman, G.Gottstein: Interface Sci.7 (1999) 307. 10.1023/A:1008781611991Suche in Google Scholar

[3] M.Upmanyu, D.J.Srolovitz, L.S.Shvindlerman, G.Gottstein: Acta Mater.50 (2002) 1405. 10.1016/S1359-6454(01)00446-3Suche in Google Scholar

[4] F.Lefevre-Schlick, Y.Brechet, H.S.Zurob, G.Purdy, D.Embury: Mater. Sci. Eng.A502 (2009) 70. 10.1016/j.msea.2008.10.015Suche in Google Scholar

[5] A.H.King: Scr. Mater.62 (2010) 889. 10.1016/j.scriptamat.2010.02.020Suche in Google Scholar

[6] K.Owusu-Boahen, A.H.King: Acta Mater.49 (2001) 237. 10.1016/S1359-6454(00)00315-3Suche in Google Scholar

[7] M.R.Chellali, Z.Balogh, L.Zheng, G.Schmitz: Scr. Mater.65 (2011) 343. 10.1016/j.scriptamat.2011.05.002Suche in Google Scholar

[8] P.Stender, Z.Balogh, G.Schmitz: Ultramicroscopy111 (2011) 524. 10.1016/j.ultramic.2010.10.021Suche in Google Scholar PubMed

[9] K.M.Yin, A.H.King, T.E.Hsieh, F.R.Chen, J.J.Kai, L.Chang: Microsc. Microanal.3 (1997) 417. 10.1017/S1431927697970318Suche in Google Scholar

[10] P.Stender, Z.Balogh, G.Schmitz: Phys. Rev. B: Condens. Matter83 (2011) 121407. 10.1103/PhysRevB.83.121407Suche in Google Scholar

[11] G.Gottstein, A.H.King, L.S.Shvindlerman: Acta Mater.48 (2000) 397. 10.1016/S1359-6454(99)00373-0Suche in Google Scholar

[12] G.Gottstein, L.Shvindlerman: Z. Metallkd.95 (2004) 219. 10.3139/146.017936Suche in Google Scholar

[13] G.Gottstein, L.S.Shvindlerman, B.Zhao: Scr. Mater.62 (2010) 914. 10.1016/j.scriptamat.2010.03.017Suche in Google Scholar

[14] D.G.Morris, D.R.Harries: J. Mater. Sci.12 (1977) 1587. 10.1007/BF00542809Suche in Google Scholar

[15] B.Zhao, G.Gottstein, L.S.Shvindlerman: Acta Mater.59 (2011) 3510. 10.1016/j.actamat.2011.02.024Suche in Google Scholar

[16] O.K.Johnson, C.A.Schuh: Acta Mater.61 (2013) 2863. 10.1016/j.actamat.2013.01.025Suche in Google Scholar

[17] F.D.Fischer, J.Svoboda, K.Hackl: Acta Mater.60 (2012) 4704. 10.1016/j.actamat.2012.05.018Suche in Google Scholar

[18] P.Streitenberger, D.Moellner: Acta Mater.59 (2011) 4235. 10.1016/j.actamat.2011.03.048Suche in Google Scholar

[19] V.Y.Novikov: Mater. Lett.84 (2012) 136. 10.1016/j.matlet.2012.06.056Suche in Google Scholar

[20] L.A.Barrales-Mora, G.Gottstein, L.S.Shvindlerman: Acta Mater.60 (2012) 546. 10.1016/j.actamat.2011.10.022Suche in Google Scholar

[21] P.Fortier, G.Palumbo, G.D.Bruce, W.A.Miller, K.T.Aust: Scr. Metall. Mater.25 (1991) 177. 10.1016/0956-716X(91)90376-CSuche in Google Scholar

[22] H.Kim, Y.Xuan, P.D.Ye, R.Narayanan, A.H.King: Acta Mater.57 (2009) 3662. 10.1016/j.actamat.2008.09.031Suche in Google Scholar

[23] S.G.Srinivasan, J.W.Cahn, H.Jónsson, G.Kalonji: Acta Mater.47 (1999) 2821. 10.1016/S1359-6454(99)00120-2Suche in Google Scholar

[24] A.Caro, H.Van Swygenhoven: Phys. Rev. B: Condens. Matter63 (2001) 134101. 10.1103/PhysRevB.63.134101Suche in Google Scholar

[25] M.Upadhyay, L.Capolungo, V.Taupin, C.Fressengeas: Int. J. Solids Struct.48 (2011) 3176. 10.1016/j.ijsolstr.2011.07.009Suche in Google Scholar

[26] S.Shekhar, A.H.King: Acta Mater.56 (2008) 5728. 10.1016/j.actamat.2008.07.053Suche in Google Scholar

[27] H.Rösner, C.Kübel, Y.Ivanisenko, L.Kurmanaeva, S.V.Divinski, M.Peterlechner, G.Wilde: Acta Mater.59 (2011) 7380. 10.1016/j.actamat.2011.08.020Suche in Google Scholar

[28] B.Zhao, J.C.Verhasselt, L.S.Shvindlerman, G.Gottstein: Acta Mater.58 (2010) 5646. 10.1016/j.actamat.2010.06.017Suche in Google Scholar

[29] D.A.Molodov, U.Czubayko, G.Gottstein, L.S.Shvindlerman: Scr. Metall. Mater.32 (1995) 529. 10.1016/0956-716X(95)90832-5Suche in Google Scholar

[30] Z.Peng: Analysis of AFM images for triple line energy measurements, RWTH Aachen University, (2012).Suche in Google Scholar

[31] B.Zhao, A.Ziemons, L.S.Shvindlerman, G.Gottstein: Acta Mater.60 (2012) 811. 10.1016/j.actamat.2011.10.034Suche in Google Scholar

[32] P.Keblinski, S.R.Phillpot, D.Wolf, H.Gleiter: Acta Mater.45 (1997) 987. 10.1016/S1359-6454(96)00236-4Suche in Google Scholar

[33] B.K.Yoon, S.Y.Choi, T.Yamamoto, Y.Ikuhara, S.J.L.Kang: Acta Mater.57 (2009) 2128. 10.1016/j.actamat.2009.01.005Suche in Google Scholar

Received: 2014-05-23
Accepted: 2014-07-25
Published Online: 2014-12-05
Published in Print: 2014-12-08

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 6.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111138/html
Button zum nach oben scrollen