Startseite Technik In-situ catalytic growth of MgAl2O4 spinel whiskers in MgO–C refractories
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

In-situ catalytic growth of MgAl2O4 spinel whiskers in MgO–C refractories

  • Boquan Zhu , Guoping Wei , Xiangcheng Li , Zheng Ma und Ying Wei
Veröffentlicht/Copyright: 1. Juni 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Upon application of nano-sized metallic Ni particles as catalyst, the in-situ synthesis mechanism of spinel whiskers in MgO–C refractories was studied. Their phase composition and morphology were determined by means of X-ray diffraction and scanning electron microscopy supported by energy dispersive spectroscopy. The results show that when the catalyst of nano-sized Ni was added in MgO–C refractories, the granular MgAl2O4 (MA) spinels transformed into the shape of whiskers at 1 200 °C. The presence of Ni catalyst can accelerate the generation of Mg vapor, which can react with Al vapor to form MA spinel whiskers. Through dissolution and precipitation, MA spinel crystals nucleate directly and grow into whiskers from the catalytic droplets of nano-sized metallic Ni particles. The growth of spinel whiskers follows a typical vapor–liquid–solid (V–L–S) growth mechanism.


*Correspondence address, Prof. Boquan Zhu, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, NO. 947, Heping Road, Wuhan 430081, P. R. China, Tel: +86-27-68862291, Fax: +86-27-68862616, E-mail:

References

[1] B.Hashemi, Z.A.Nemati, M.A.Faghihi-Sani: Ceram. Int.32 (2006) 313. 10.1016/j.ceramint.2005.03.008.Suche in Google Scholar

[2] S.Zhang, N.J.Marriott, W.E.Lee: J. Eur. Ceram. Soc.21 (2001) 1037. 101016/S0955-2219(00)00308-3.Suche in Google Scholar

[3] S.Zhang: Adv. Sci. Tech.45 (2006) 2246. 10.4028/www.scientific.net/AST.45.2246.Suche in Google Scholar

[4] E.Mohamed, M.Ewais: J. Ceram. Soc. Jpn.112 (2004) 517. 10.2109/jcersj.112.517.Suche in Google Scholar

[5] M.Bag, S.Adak, R.Sarkar: Ceram. Int.38 (2012) 2339. 10.1016/j.ceramint.2011.10.086.Suche in Google Scholar

[6] X.C.Li, B.Q.Zhu, T.X.Wang: Ceram. Int.38 (2012) 2105. 10.1016/j.ceramint.2011.10.049.Suche in Google Scholar

[7] M.Luo, Y.W.Li, S.L.Jin, S.B.Sang, L.Zhao, Y.B.Li: Mater. Sci. Eng. A548 (2012) 134. 10.1016/j.msea.2012.04.001Suche in Google Scholar

[8] B.Liu, J.L.Sun, G.S.Tang, K.Q.Liu, L.Li, Y.F.Liu: J. Iron. Steel Res. Int.17 (2010) 75. 10.1016/S1006-706X(10)60187-2.Suche in Google Scholar

[9] B.Q.Zhu, Y.N.Zhu, X.C.Li, F.Zhao: Ceram. Int.39 (2013) 6069. 10.1016/j.ceramint.2013.01.024.Suche in Google Scholar

[10] C.G.Aneziris, J.Hubálková, R.Barabás: J. Eur. Ceram. Soc.27 (2007) 73. 10.1016/j.jeurceramsoc.2006.03.001.Suche in Google Scholar

[11] T.B.Zhu, Y.W.Li, M.Luo, S.B.Sang, Q.H.Wang, L.Zhao, Y.B.Li, S.J.Li: Ceram. Int.39 (2013) 3017. 10.1016/j.ceramint.2012.09.080.Suche in Google Scholar

[12] T.B.Zhu, Y.W.Li, S.L.Jin, S.B.Sang, Q.H.Wang, L.Zhao, Y.B.Li, S.J.Li: Ceram. Int.39 (2013) 4529. 10.1016/j.ceramint.2012.11.049.Suche in Google Scholar

[13] M.Bavand-Vandchali, F.Golestani-Fard, H.Sarpoolaky, H.R.Rezaie, C.G.Aneziris: J. Eur. Ceram. Soc.28 (2008) 563. 10.1016/j.jeurceramsoc.2007.009.Suche in Google Scholar

[14] M.Bavand-Vandchali, H.Sarpoolaky, F.Golestani-Fard, H.R.Rezaie: Ceram. Int.35 (2009) 861. 10.1016/j.ceramint.2008.03.001.Suche in Google Scholar

[15] S.Hashimoto, A.Yamaguchi: J. Am. Ceram. Soc.79 (1996) 491. 10.1111/j.1151-2916.1996.tb08150.x.Suche in Google Scholar

[16] Z.H.Xie, F.B.Ye: Journal of Wuhan University of Technology-Mater. Sci. Ed.24 (2009) 896. 10.1007/s11595-009-6896-1.Suche in Google Scholar

[17] W.S.Jung, H.U.Joo: J. Cryst. Growth285 (2005) 566. 10.1016/j.jcrysgro.2005.09.004.Suche in Google Scholar

[18] C.C.Tang, S.S.Fan, P.Li, M.Lamy de la Chapelle, H.Y.Dang: J. Cryst. Growth224 (2001) 117. 10.1016/S0022-0248(01)00852-1.Suche in Google Scholar

[19] R.T.Li, W.Pan, M.Sano, J.Q.Li: Thermochim. Acta398 (2003) 265. 10.1016/S0040-6031(02)00324-6.Suche in Google Scholar

[20] Á.G.De la Torre, F.J.Valle, A.H.De Aza: J. Eur. Ceram. Soc.26 (2006) 2587. 10.1016/j.jeurceramsoc.2005.05.005.Suche in Google Scholar

[21] A.H.De Aza, Á.G.De la Torre, M.A.G.Aranda, F.J.Valle, S.Aza: J. Am. Ceram. Soc.87 (2004) 449. 10.1111/j.1551-2916.2004.00449.x.Suche in Google Scholar

[22] Y.L.Chai, Y.S.Chang, G.J.Chen, Y.J.Hsiao: Mater. Res. Bull.43 (2008) 1066. 10.1016/j.materresbull.2007.06.002.Suche in Google Scholar

[23] X.L.Chen, Y.B.Li, Y.W.Li: Ceram. Int.34 (2008) 1253. 10.1016/j.ceramint.2007.03.016.Suche in Google Scholar

[24] X.LChen, Y.W.Li, Y.B.Li, S.J.Li, L.Zhao, S.Ge: Metal. Mater. Trans. A40 (2009) 1675. 10.1007/s11661-009-9850-0.Suche in Google Scholar

[25] I.D.Kashcheev, L.V.Serova: Refract. Ind. Ceram.47 (2006) 125. 10.1007/s11148-006-0070-5.Suche in Google Scholar

[26] B.Q.Zhu, G.P.Wei, X.C.Li, Z.Ma, Y.Wei: Mater. Res. Innov. (2013) in press. 10.1179/1433075X13Y.0000000125Suche in Google Scholar

[27] E.F.Kukovitsky, S.G.L'vov, N.A.Sainov: Chem. Phys. Lett.317 (2000) 65. 10.1016/S0009-2614(99)01299-3.Suche in Google Scholar

[28] Y.Chen, C.G.Wang, B.Zhu, Y.X.Wang, Y.Z.Liu, T.T.Tan, R.R.Gao, X.Lin, F.Meng: J. Cryst. Growth357 (2012) 42. 10.1016/j.jcrysgro.2012.07.043.Suche in Google Scholar

[29] Z.H.Li, Y.W.Zhang, Z.H.Shi: Int. J. Mater. Res.104 (2013) 567. 10.3139/146.110901.Suche in Google Scholar

Received: 2013-10-21
Accepted: 2014-01-29
Published Online: 2014-06-01
Published in Print: 2014-06-12

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 6.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111070/html
Button zum nach oben scrollen