In-situ catalytic growth of MgAl2O4 spinel whiskers in MgO–C refractories
-
Boquan Zhu
, Guoping Wei , Xiangcheng Li , Zheng Ma und Ying Wei
Abstract
Upon application of nano-sized metallic Ni particles as catalyst, the in-situ synthesis mechanism of spinel whiskers in MgO–C refractories was studied. Their phase composition and morphology were determined by means of X-ray diffraction and scanning electron microscopy supported by energy dispersive spectroscopy. The results show that when the catalyst of nano-sized Ni was added in MgO–C refractories, the granular MgAl2O4 (MA) spinels transformed into the shape of whiskers at 1 200 °C. The presence of Ni catalyst can accelerate the generation of Mg vapor, which can react with Al vapor to form MA spinel whiskers. Through dissolution and precipitation, MA spinel crystals nucleate directly and grow into whiskers from the catalytic droplets of nano-sized metallic Ni particles. The growth of spinel whiskers follows a typical vapor–liquid–solid (V–L–S) growth mechanism.
References
[1] B.Hashemi, Z.A.Nemati, M.A.Faghihi-Sani: Ceram. Int.32 (2006) 313. 10.1016/j.ceramint.2005.03.008.Suche in Google Scholar
[2] S.Zhang, N.J.Marriott, W.E.Lee: J. Eur. Ceram. Soc.21 (2001) 1037. 101016/S0955-2219(00)00308-3.Suche in Google Scholar
[3] S.Zhang: Adv. Sci. Tech.45 (2006) 2246. 10.4028/www.scientific.net/AST.45.2246.Suche in Google Scholar
[4] E.Mohamed, M.Ewais: J. Ceram. Soc. Jpn.112 (2004) 517. 10.2109/jcersj.112.517.Suche in Google Scholar
[5] M.Bag, S.Adak, R.Sarkar: Ceram. Int.38 (2012) 2339. 10.1016/j.ceramint.2011.10.086.Suche in Google Scholar
[6] X.C.Li, B.Q.Zhu, T.X.Wang: Ceram. Int.38 (2012) 2105. 10.1016/j.ceramint.2011.10.049.Suche in Google Scholar
[7] M.Luo, Y.W.Li, S.L.Jin, S.B.Sang, L.Zhao, Y.B.Li: Mater. Sci. Eng. A548 (2012) 134. 10.1016/j.msea.2012.04.001Suche in Google Scholar
[8] B.Liu, J.L.Sun, G.S.Tang, K.Q.Liu, L.Li, Y.F.Liu: J. Iron. Steel Res. Int.17 (2010) 75. 10.1016/S1006-706X(10)60187-2.Suche in Google Scholar
[9] B.Q.Zhu, Y.N.Zhu, X.C.Li, F.Zhao: Ceram. Int.39 (2013) 6069. 10.1016/j.ceramint.2013.01.024.Suche in Google Scholar
[10] C.G.Aneziris, J.Hubálková, R.Barabás: J. Eur. Ceram. Soc.27 (2007) 73. 10.1016/j.jeurceramsoc.2006.03.001.Suche in Google Scholar
[11] T.B.Zhu, Y.W.Li, M.Luo, S.B.Sang, Q.H.Wang, L.Zhao, Y.B.Li, S.J.Li: Ceram. Int.39 (2013) 3017. 10.1016/j.ceramint.2012.09.080.Suche in Google Scholar
[12] T.B.Zhu, Y.W.Li, S.L.Jin, S.B.Sang, Q.H.Wang, L.Zhao, Y.B.Li, S.J.Li: Ceram. Int.39 (2013) 4529. 10.1016/j.ceramint.2012.11.049.Suche in Google Scholar
[13] M.Bavand-Vandchali, F.Golestani-Fard, H.Sarpoolaky, H.R.Rezaie, C.G.Aneziris: J. Eur. Ceram. Soc.28 (2008) 563. 10.1016/j.jeurceramsoc.2007.009.Suche in Google Scholar
[14] M.Bavand-Vandchali, H.Sarpoolaky, F.Golestani-Fard, H.R.Rezaie: Ceram. Int.35 (2009) 861. 10.1016/j.ceramint.2008.03.001.Suche in Google Scholar
[15] S.Hashimoto, A.Yamaguchi: J. Am. Ceram. Soc.79 (1996) 491. 10.1111/j.1151-2916.1996.tb08150.x.Suche in Google Scholar
[16] Z.H.Xie, F.B.Ye: Journal of Wuhan University of Technology-Mater. Sci. Ed.24 (2009) 896. 10.1007/s11595-009-6896-1.Suche in Google Scholar
[17] W.S.Jung, H.U.Joo: J. Cryst. Growth285 (2005) 566. 10.1016/j.jcrysgro.2005.09.004.Suche in Google Scholar
[18] C.C.Tang, S.S.Fan, P.Li, M.Lamy de la Chapelle, H.Y.Dang: J. Cryst. Growth224 (2001) 117. 10.1016/S0022-0248(01)00852-1.Suche in Google Scholar
[19] R.T.Li, W.Pan, M.Sano, J.Q.Li: Thermochim. Acta398 (2003) 265. 10.1016/S0040-6031(02)00324-6.Suche in Google Scholar
[20] Á.G.De la Torre, F.J.Valle, A.H.De Aza: J. Eur. Ceram. Soc.26 (2006) 2587. 10.1016/j.jeurceramsoc.2005.05.005.Suche in Google Scholar
[21] A.H.De Aza, Á.G.De la Torre, M.A.G.Aranda, F.J.Valle, S.Aza: J. Am. Ceram. Soc.87 (2004) 449. 10.1111/j.1551-2916.2004.00449.x.Suche in Google Scholar
[22] Y.L.Chai, Y.S.Chang, G.J.Chen, Y.J.Hsiao: Mater. Res. Bull.43 (2008) 1066. 10.1016/j.materresbull.2007.06.002.Suche in Google Scholar
[23] X.L.Chen, Y.B.Li, Y.W.Li: Ceram. Int.34 (2008) 1253. 10.1016/j.ceramint.2007.03.016.Suche in Google Scholar
[24] X.LChen, Y.W.Li, Y.B.Li, S.J.Li, L.Zhao, S.Ge: Metal. Mater. Trans. A40 (2009) 1675. 10.1007/s11661-009-9850-0.Suche in Google Scholar
[25] I.D.Kashcheev, L.V.Serova: Refract. Ind. Ceram.47 (2006) 125. 10.1007/s11148-006-0070-5.Suche in Google Scholar
[26] B.Q.Zhu, G.P.Wei, X.C.Li, Z.Ma, Y.Wei: Mater. Res. Innov. (2013) in press. 10.1179/1433075X13Y.0000000125Suche in Google Scholar
[27] E.F.Kukovitsky, S.G.L'vov, N.A.Sainov: Chem. Phys. Lett.317 (2000) 65. 10.1016/S0009-2614(99)01299-3.Suche in Google Scholar
[28] Y.Chen, C.G.Wang, B.Zhu, Y.X.Wang, Y.Z.Liu, T.T.Tan, R.R.Gao, X.Lin, F.Meng: J. Cryst. Growth357 (2012) 42. 10.1016/j.jcrysgro.2012.07.043.Suche in Google Scholar
[29] Z.H.Li, Y.W.Zhang, Z.H.Shi: Int. J. Mater. Res.104 (2013) 567. 10.3139/146.110901.Suche in Google Scholar
© 2014, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Thermodynamic modeling of the In–Pt–Sb system
- Classical controlled rolling of low C steels microalloyed with Ti and Mo
- Development of carbide intermetallic layer by electric discharge alloying on AISI-D2 tool steel and its wear resistance
- Comparison of fatigue crack growth rate of selective laser sintered RapidSteel via computational fracture mechanics
- Wear resistance and fracture mechanics of WC–Co composites
- Thermal expansion behavior of CNT/Ag nanocomposite
- Thermophysical properties of solid phase rhodium measured by the pulse calorimetry technique over a wide temperature range
- Influence of Co3O4 addition on the ionic conductivity and microstructural properties of yttria-stabilized zirconia (8YSZ)
- High-activity of Pd catalyst supported on antimony tin oxide for hydrogen peroxide electroreduction
- Investigation of low k interfacial layer characteristics of LaAlO3 thin films grown on Si (100)
- In-situ catalytic growth of MgAl2O4 spinel whiskers in MgO–C refractories
- Short Communications
- Preparation and characterization of boron nitride/carbon fiber composite with high specific surface area
- Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution
- Effect of grain size on the microstructure and mechanical properties of Mg-4Y-3Nd-0.5Zr alloy
- People
- Professor Ulrich Martin on his 65th birthday
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Thermodynamic modeling of the In–Pt–Sb system
- Classical controlled rolling of low C steels microalloyed with Ti and Mo
- Development of carbide intermetallic layer by electric discharge alloying on AISI-D2 tool steel and its wear resistance
- Comparison of fatigue crack growth rate of selective laser sintered RapidSteel via computational fracture mechanics
- Wear resistance and fracture mechanics of WC–Co composites
- Thermal expansion behavior of CNT/Ag nanocomposite
- Thermophysical properties of solid phase rhodium measured by the pulse calorimetry technique over a wide temperature range
- Influence of Co3O4 addition on the ionic conductivity and microstructural properties of yttria-stabilized zirconia (8YSZ)
- High-activity of Pd catalyst supported on antimony tin oxide for hydrogen peroxide electroreduction
- Investigation of low k interfacial layer characteristics of LaAlO3 thin films grown on Si (100)
- In-situ catalytic growth of MgAl2O4 spinel whiskers in MgO–C refractories
- Short Communications
- Preparation and characterization of boron nitride/carbon fiber composite with high specific surface area
- Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution
- Effect of grain size on the microstructure and mechanical properties of Mg-4Y-3Nd-0.5Zr alloy
- People
- Professor Ulrich Martin on his 65th birthday
- DGM News
- DGM News