Influence of Co3O4 addition on the ionic conductivity and microstructural properties of yttria-stabilized zirconia (8YSZ)
-
Bulent Aktas
and Suleyman Tekeli
Abstract
In this study, 0 – 15 wt.% Co3O4 powders were added to 8 mol.% yttria-stabilized cubic zirconia (8YSZ) powders in order to determine the effect of Co3O4 addition and amount on the microstructure, sintering, and electrical properties of yttria-stabilized cubic zirconia. Colloidal processing was used to ensure uniform mixing of the powders and to obtain a homogeneous microstructure. X-ray diffraction results showed that the average lattice parameter of the yttria-stabilized cubic zirconia decreased from 5.146 Å to 5.135 Å upon Co3O4 addition, and that the lattice parameter did not change above a Co3O4 content of 1 wt.%. The initial decrease in the lattice parameter is attributable to the smaller ionic radius of Co3+ dissolved in the yttria-stabilized cubic zirconia matrix. The electrical conductivity of the specimens was measured using a frequency response analyzer in the range of 100 mHz – 13 MHz and 300 – 800 °C. Grain boundary conductivity of yttria-stabilized cubic zirconia was found to be enhanced with increasing Co3O4 addition, with the presence of electronically conductive cobalt oxide at grain boundary triple points increasing the grain boundary conductivity, due to an increase in the Co3+ and Co2+ electronic charge carrier ions.
References
[1] M.J.Verkerk, A.J.A.Winnubst, A.J.Burggraaf: J. Mater. Sci.17 (1982) 3113. 10.1007/BF01203473Search in Google Scholar
[2] M.Miyayama, H.Yanagida, A.Asada: Am. Ceram. Soc. Bull.64 (1985) 660.Search in Google Scholar
[3] Y.Oh, D.Ahn, S.Nam, C.Kim, J.G.Lee, B.Park: Electron. Mater. Lett.4 (2008) 103.Search in Google Scholar
[4] D.Y.Kim, H.J.Ahn, J.S.Kim, I.P.Kim, J.H.Kweon, T.H.Nam, K.W.Kim, J.H.Ahn, S.H.Hong: Electron. Mater. Lett.5 (2009) 183. 10.3365/eml.2009.12.183Search in Google Scholar
[5] C.N.Polo Da Fonseca, M.A.DePaoli, A.Gorenstein: Adv. Mater.3 (1991) 553. 10.1002/adma.19910031107Search in Google Scholar
[6] C.C.Hu, C.Y.Cheng: Electrochem. Solid-State Lett.5 (2002) A43. 10.1149/1.1448184Search in Google Scholar
[7] H.Kim, D.W.Park, H.C.Woo, J.S.Chung: Appl. Catal.B19 (1998) 233. 10.1016/S0926-3373(98)00074-5Search in Google Scholar
[8] S.Abdollah, M.Hussein, H.Rahman, S.Saied: Sens. ActuatorsB129 (2008) 246. 10.1016/j.snb.2007.08.017Search in Google Scholar
[9] S.Noguchi, M.Mizuhashi: Thin Solid Films77 (1981) 99. 10.1016/0040-6090(81)90364-3Search in Google Scholar
[10] J.Jiu, Y.Ge, L.Nie: Mater. Lett.54 (2002) 260. 10.1016/S0167-577X(01)00573-0Search in Google Scholar
[11] W.Y.Li, L.N.Xu, J.Chen: Adv. Funct. Mater.15 (2005) 851. 10.1002/adfm.200400429Search in Google Scholar
[12] G.Hongyu, S.Changlu, W.Shangbin, C.Bin, G.Jian, Y.Xinghua: Mater. Chem. Phys.82 (2003) 1002. 10.1016/j.matchemphys.2003.09.003Search in Google Scholar
[13] S.W.Choi, J.Y.Park, S.S.Kim: Ceram. Int.37 (2011) 427. 10.1016/j.ceramint.2010.09.002Search in Google Scholar
[14] G.Godillot, L.Guerlou-Demourgues, L.Croguennec, K.M.Shaju, C.Delmas: J. Phys. Chem. C117 (2013) 9065. 10.1021/jp3100359Search in Google Scholar
[15] H.Duan, D.Xu, W.Li, H.Xu: Catal. Lett.124 (2008) 318. 10.1007/s10562-008-9463-zSearch in Google Scholar
[16] N.K.Appandairajan, B.Viswanathan, J.Gopalakrishnan: Solid State Chem.40 (1981) 117. 10.1016/0022-4596(81)90369-8Search in Google Scholar
[17] M.Hartmanova, F.Hanic, D.Tunega, K.Putyera: Chem. Pap.52 (1998) 12.Search in Google Scholar
[18] G.S.Lewis, A.Atkinson, B.C.H.Steele: J. Mater. Sci. Lett.20 (2001) 1155. 10.1023/A:1010912912157Search in Google Scholar
[19] G.C.T.Silva, E.N.S.Muccillo: Solid State Ionics180 (2009) 835. 10.1016/j.ssi.2009.02.003Search in Google Scholar
[20] S.Sakamoto, M.Yoshinaka, K.Hirota, O.Yamaguchi: J. Am. Ceram. Soc.80 (1997) 267. 10.1111/j.1151-2916.1997.tb02824.xSearch in Google Scholar
[21] S.Beg, P.Varshney: Phase Transitions80 (2007) 867. 10.1080/01411590701374580Search in Google Scholar
[22] R.M.Batista, E.N.S.Muccillo: Ceram. Int.37 (2011) 1929. 10.1016/j.ceramint.2011.03.045Search in Google Scholar
[23] C.M.Fernandes, A.Castela, F.M.Figueiredo, J.R.Frade: Solid State Ionics193 (2011) 52. 10.1016/j.ssi.2011.02.017Search in Google Scholar
[24] Q.Dong, Z.H.Du, T.S.Zhang, J.Lu, X.C.Song, J.Ma: Int. J. Hydrogen Energy34 (2009) 7903. 10.1016/j.ijhydene.2009.06.042Search in Google Scholar
[25] J.Li, T.Ikegami, T.Mori: Acta Mater.52 (2004) 2221. 10.1016/j.actamat.2004.01.014Search in Google Scholar
[26] K.Mocala, A.Navrotsky, D.M.Sherman: Phys. Chem. Miner.19 (1992) 88. 10.1007/BF00198606Search in Google Scholar
[27] G.S.Lewis, A.Atkinson, B.C.H.Steele, J.Drennan: Solid State Ionics152 (2002) 567. 10.1016/S0167-2738(02)00372-7Search in Google Scholar
[28] G.C.T.Silva, E.N.S.Muccillo: Mater. Sci. Forum591-593 (2008) 397. 10.4028/www.scientific.net/MSF.591-593.397Search in Google Scholar
[29] M.U.Cohen: Rev. Sci. Instrum.6 (1935) 68. 10.1063/1.1751937Search in Google Scholar
[30] R.D.Shannon: Acta Crystallogr. Sect. A32 (1976) 751. 10.1107/S0567739476001551Search in Google Scholar
[31] R.D.Shannon, C.T.Prewitt: Acta Crystallogr. Sect. B25 (1969) 925. 10.1107/S0567740869003220Search in Google Scholar
[32] C.Kleinlogel, L.J.Gauckler: Solid State Ionics135 (2000) 567. 10.1016/S0167-2738(00)00437-9Search in Google Scholar
[33] C.M.Kleinlogel, L.J.Gauckler: J. Electroceram.5 (2000) 231. 10.1023/A:1026583629995Search in Google Scholar
[34] E.Jud, L.J.Gauckler: J. Electroceram.15 (2005) 159. 10.1007/s10832-005-2193-3Search in Google Scholar
[35] E.Jud, Z.Zhang, W.Sigle, L.J.Gauckler: J. Electroceram.16 (2006) 191. 10.1007/s10832-006-258-8Search in Google Scholar
[36] E.Jud, L.J.Gauckler: J. Electroceram.14 (2005) 247. 10.1007/s10832-005-0964-5Search in Google Scholar
[37] S.P.S.Badwal, F.T.Ciacchi, D.Milosevic: Solid State Ionics136-137 (2000) 91. 10.1016/S0167-2738(00)00356-8Search in Google Scholar
[38] M.C.Martin, M.L.Mecartney: Solid State Ionics161 (2003) 67. 10.1016/S0167-2738(03)00265-0Search in Google Scholar
[39] X.Guo, R.Waser: Prog. Mater. Sci.51 (2006) 151. 10.1016/j.pmatsci.2005.07.001Search in Google Scholar
[40] V.V.Kharton, F.M.B.Marques, A.Atkinson: Solid State Ionics174 (2004) 135. 10.1016/j.ssi.2004.06.015Search in Google Scholar
[41] J.H.Lee, T.Mori, J.G.Li, T.Ikegamin, M.Komatsu, H.Haneda: J. Electrochem. Soc.147 (2000) 2822. 10.1149/1.1393612Search in Google Scholar
[42] H.L.Tuller: Solid State Ionics131 (2000) 143. 10.1016/S0167-2738(00)00629-9Search in Google Scholar
[43] X.Guo, J.Maier: J. Electrochem. Soc.148 (2001) E121. 10.1149/1.1348267Search in Google Scholar
[44] J.Fleig, J.Maier: J. Eur. Ceram. Soc.19 (1999) 693. 10.1016/S0955-2219(98)00298-2Search in Google Scholar
[45] S.Bang: Ionic conductivity and phase stability of yttria stabilized zirconia doped with monovalent and pentavalent cations for solid oxide fuel cell electrolyte applications, PhD Thesis, University of California, Irvine (2008).Search in Google Scholar
[46] Y.Liu, L.E.Lao: Solid State Ionics177 (2006) 159. 10.1016/j.ssi.2005.10.002Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Thermodynamic modeling of the In–Pt–Sb system
- Classical controlled rolling of low C steels microalloyed with Ti and Mo
- Development of carbide intermetallic layer by electric discharge alloying on AISI-D2 tool steel and its wear resistance
- Comparison of fatigue crack growth rate of selective laser sintered RapidSteel via computational fracture mechanics
- Wear resistance and fracture mechanics of WC–Co composites
- Thermal expansion behavior of CNT/Ag nanocomposite
- Thermophysical properties of solid phase rhodium measured by the pulse calorimetry technique over a wide temperature range
- Influence of Co3O4 addition on the ionic conductivity and microstructural properties of yttria-stabilized zirconia (8YSZ)
- High-activity of Pd catalyst supported on antimony tin oxide for hydrogen peroxide electroreduction
- Investigation of low k interfacial layer characteristics of LaAlO3 thin films grown on Si (100)
- In-situ catalytic growth of MgAl2O4 spinel whiskers in MgO–C refractories
- Short Communications
- Preparation and characterization of boron nitride/carbon fiber composite with high specific surface area
- Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution
- Effect of grain size on the microstructure and mechanical properties of Mg-4Y-3Nd-0.5Zr alloy
- People
- Professor Ulrich Martin on his 65th birthday
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Thermodynamic modeling of the In–Pt–Sb system
- Classical controlled rolling of low C steels microalloyed with Ti and Mo
- Development of carbide intermetallic layer by electric discharge alloying on AISI-D2 tool steel and its wear resistance
- Comparison of fatigue crack growth rate of selective laser sintered RapidSteel via computational fracture mechanics
- Wear resistance and fracture mechanics of WC–Co composites
- Thermal expansion behavior of CNT/Ag nanocomposite
- Thermophysical properties of solid phase rhodium measured by the pulse calorimetry technique over a wide temperature range
- Influence of Co3O4 addition on the ionic conductivity and microstructural properties of yttria-stabilized zirconia (8YSZ)
- High-activity of Pd catalyst supported on antimony tin oxide for hydrogen peroxide electroreduction
- Investigation of low k interfacial layer characteristics of LaAlO3 thin films grown on Si (100)
- In-situ catalytic growth of MgAl2O4 spinel whiskers in MgO–C refractories
- Short Communications
- Preparation and characterization of boron nitride/carbon fiber composite with high specific surface area
- Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution
- Effect of grain size on the microstructure and mechanical properties of Mg-4Y-3Nd-0.5Zr alloy
- People
- Professor Ulrich Martin on his 65th birthday
- DGM News
- DGM News