Home Technology Influence of Co3O4 addition on the ionic conductivity and microstructural properties of yttria-stabilized zirconia (8YSZ)
Article
Licensed
Unlicensed Requires Authentication

Influence of Co3O4 addition on the ionic conductivity and microstructural properties of yttria-stabilized zirconia (8YSZ)

  • Bulent Aktas and Suleyman Tekeli
Published/Copyright: June 1, 2014
Become an author with De Gruyter Brill

Abstract

In this study, 0 – 15 wt.% Co3O4 powders were added to 8 mol.% yttria-stabilized cubic zirconia (8YSZ) powders in order to determine the effect of Co3O4 addition and amount on the microstructure, sintering, and electrical properties of yttria-stabilized cubic zirconia. Colloidal processing was used to ensure uniform mixing of the powders and to obtain a homogeneous microstructure. X-ray diffraction results showed that the average lattice parameter of the yttria-stabilized cubic zirconia decreased from 5.146 Å to 5.135 Å upon Co3O4 addition, and that the lattice parameter did not change above a Co3O4 content of 1 wt.%. The initial decrease in the lattice parameter is attributable to the smaller ionic radius of Co3+ dissolved in the yttria-stabilized cubic zirconia matrix. The electrical conductivity of the specimens was measured using a frequency response analyzer in the range of 100 mHz – 13 MHz and 300 – 800 °C. Grain boundary conductivity of yttria-stabilized cubic zirconia was found to be enhanced with increasing Co3O4 addition, with the presence of electronically conductive cobalt oxide at grain boundary triple points increasing the grain boundary conductivity, due to an increase in the Co3+ and Co2+ electronic charge carrier ions.


*Correspondence address, Assist. Prof. Bulent Aktas, Harran University, Osmanbey campus, Engineering Faculty, Department of Mechanical Engineering, 63300, Sanliurfa, Turkey, Tel: +90 414 3183000, Fax: +90 414 3183799, E-mail:

References

[1] M.J.Verkerk, A.J.A.Winnubst, A.J.Burggraaf: J. Mater. Sci.17 (1982) 3113. 10.1007/BF01203473Search in Google Scholar

[2] M.Miyayama, H.Yanagida, A.Asada: Am. Ceram. Soc. Bull.64 (1985) 660.Search in Google Scholar

[3] Y.Oh, D.Ahn, S.Nam, C.Kim, J.G.Lee, B.Park: Electron. Mater. Lett.4 (2008) 103.Search in Google Scholar

[4] D.Y.Kim, H.J.Ahn, J.S.Kim, I.P.Kim, J.H.Kweon, T.H.Nam, K.W.Kim, J.H.Ahn, S.H.Hong: Electron. Mater. Lett.5 (2009) 183. 10.3365/eml.2009.12.183Search in Google Scholar

[5] C.N.Polo Da Fonseca, M.A.DePaoli, A.Gorenstein: Adv. Mater.3 (1991) 553. 10.1002/adma.19910031107Search in Google Scholar

[6] C.C.Hu, C.Y.Cheng: Electrochem. Solid-State Lett.5 (2002) A43. 10.1149/1.1448184Search in Google Scholar

[7] H.Kim, D.W.Park, H.C.Woo, J.S.Chung: Appl. Catal.B19 (1998) 233. 10.1016/S0926-3373(98)00074-5Search in Google Scholar

[8] S.Abdollah, M.Hussein, H.Rahman, S.Saied: Sens. ActuatorsB129 (2008) 246. 10.1016/j.snb.2007.08.017Search in Google Scholar

[9] S.Noguchi, M.Mizuhashi: Thin Solid Films77 (1981) 99. 10.1016/0040-6090(81)90364-3Search in Google Scholar

[10] J.Jiu, Y.Ge, L.Nie: Mater. Lett.54 (2002) 260. 10.1016/S0167-577X(01)00573-0Search in Google Scholar

[11] W.Y.Li, L.N.Xu, J.Chen: Adv. Funct. Mater.15 (2005) 851. 10.1002/adfm.200400429Search in Google Scholar

[12] G.Hongyu, S.Changlu, W.Shangbin, C.Bin, G.Jian, Y.Xinghua: Mater. Chem. Phys.82 (2003) 1002. 10.1016/j.matchemphys.2003.09.003Search in Google Scholar

[13] S.W.Choi, J.Y.Park, S.S.Kim: Ceram. Int.37 (2011) 427. 10.1016/j.ceramint.2010.09.002Search in Google Scholar

[14] G.Godillot, L.Guerlou-Demourgues, L.Croguennec, K.M.Shaju, C.Delmas: J. Phys. Chem. C117 (2013) 9065. 10.1021/jp3100359Search in Google Scholar

[15] H.Duan, D.Xu, W.Li, H.Xu: Catal. Lett.124 (2008) 318. 10.1007/s10562-008-9463-zSearch in Google Scholar

[16] N.K.Appandairajan, B.Viswanathan, J.Gopalakrishnan: Solid State Chem.40 (1981) 117. 10.1016/0022-4596(81)90369-8Search in Google Scholar

[17] M.Hartmanova, F.Hanic, D.Tunega, K.Putyera: Chem. Pap.52 (1998) 12.Search in Google Scholar

[18] G.S.Lewis, A.Atkinson, B.C.H.Steele: J. Mater. Sci. Lett.20 (2001) 1155. 10.1023/A:1010912912157Search in Google Scholar

[19] G.C.T.Silva, E.N.S.Muccillo: Solid State Ionics180 (2009) 835. 10.1016/j.ssi.2009.02.003Search in Google Scholar

[20] S.Sakamoto, M.Yoshinaka, K.Hirota, O.Yamaguchi: J. Am. Ceram. Soc.80 (1997) 267. 10.1111/j.1151-2916.1997.tb02824.xSearch in Google Scholar

[21] S.Beg, P.Varshney: Phase Transitions80 (2007) 867. 10.1080/01411590701374580Search in Google Scholar

[22] R.M.Batista, E.N.S.Muccillo: Ceram. Int.37 (2011) 1929. 10.1016/j.ceramint.2011.03.045Search in Google Scholar

[23] C.M.Fernandes, A.Castela, F.M.Figueiredo, J.R.Frade: Solid State Ionics193 (2011) 52. 10.1016/j.ssi.2011.02.017Search in Google Scholar

[24] Q.Dong, Z.H.Du, T.S.Zhang, J.Lu, X.C.Song, J.Ma: Int. J. Hydrogen Energy34 (2009) 7903. 10.1016/j.ijhydene.2009.06.042Search in Google Scholar

[25] J.Li, T.Ikegami, T.Mori: Acta Mater.52 (2004) 2221. 10.1016/j.actamat.2004.01.014Search in Google Scholar

[26] K.Mocala, A.Navrotsky, D.M.Sherman: Phys. Chem. Miner.19 (1992) 88. 10.1007/BF00198606Search in Google Scholar

[27] G.S.Lewis, A.Atkinson, B.C.H.Steele, J.Drennan: Solid State Ionics152 (2002) 567. 10.1016/S0167-2738(02)00372-7Search in Google Scholar

[28] G.C.T.Silva, E.N.S.Muccillo: Mater. Sci. Forum591-593 (2008) 397. 10.4028/www.scientific.net/MSF.591-593.397Search in Google Scholar

[29] M.U.Cohen: Rev. Sci. Instrum.6 (1935) 68. 10.1063/1.1751937Search in Google Scholar

[30] R.D.Shannon: Acta Crystallogr. Sect. A32 (1976) 751. 10.1107/S0567739476001551Search in Google Scholar

[31] R.D.Shannon, C.T.Prewitt: Acta Crystallogr. Sect. B25 (1969) 925. 10.1107/S0567740869003220Search in Google Scholar

[32] C.Kleinlogel, L.J.Gauckler: Solid State Ionics135 (2000) 567. 10.1016/S0167-2738(00)00437-9Search in Google Scholar

[33] C.M.Kleinlogel, L.J.Gauckler: J. Electroceram.5 (2000) 231. 10.1023/A:1026583629995Search in Google Scholar

[34] E.Jud, L.J.Gauckler: J. Electroceram.15 (2005) 159. 10.1007/s10832-005-2193-3Search in Google Scholar

[35] E.Jud, Z.Zhang, W.Sigle, L.J.Gauckler: J. Electroceram.16 (2006) 191. 10.1007/s10832-006-258-8Search in Google Scholar

[36] E.Jud, L.J.Gauckler: J. Electroceram.14 (2005) 247. 10.1007/s10832-005-0964-5Search in Google Scholar

[37] S.P.S.Badwal, F.T.Ciacchi, D.Milosevic: Solid State Ionics136-137 (2000) 91. 10.1016/S0167-2738(00)00356-8Search in Google Scholar

[38] M.C.Martin, M.L.Mecartney: Solid State Ionics161 (2003) 67. 10.1016/S0167-2738(03)00265-0Search in Google Scholar

[39] X.Guo, R.Waser: Prog. Mater. Sci.51 (2006) 151. 10.1016/j.pmatsci.2005.07.001Search in Google Scholar

[40] V.V.Kharton, F.M.B.Marques, A.Atkinson: Solid State Ionics174 (2004) 135. 10.1016/j.ssi.2004.06.015Search in Google Scholar

[41] J.H.Lee, T.Mori, J.G.Li, T.Ikegamin, M.Komatsu, H.Haneda: J. Electrochem. Soc.147 (2000) 2822. 10.1149/1.1393612Search in Google Scholar

[42] H.L.Tuller: Solid State Ionics131 (2000) 143. 10.1016/S0167-2738(00)00629-9Search in Google Scholar

[43] X.Guo, J.Maier: J. Electrochem. Soc.148 (2001) E121. 10.1149/1.1348267Search in Google Scholar

[44] J.Fleig, J.Maier: J. Eur. Ceram. Soc.19 (1999) 693. 10.1016/S0955-2219(98)00298-2Search in Google Scholar

[45] S.Bang: Ionic conductivity and phase stability of yttria stabilized zirconia doped with monovalent and pentavalent cations for solid oxide fuel cell electrolyte applications, PhD Thesis, University of California, Irvine (2008).Search in Google Scholar

[46] Y.Liu, L.E.Lao: Solid State Ionics177 (2006) 159. 10.1016/j.ssi.2005.10.002Search in Google Scholar

Received: 2013-08-17
Accepted: 2014-01-16
Published Online: 2014-06-01
Published in Print: 2014-06-12

© 2014, Carl Hanser Verlag, München

Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111068/html
Scroll to top button