High-activity of Pd catalyst supported on antimony tin oxide for hydrogen peroxide electroreduction
-
Limei Sun
, Zongrui Liu , Yingrong Bao , Hongxia Li and Wuyunga Bao
Abstract
Pd electrocatalysts supported on antimony tin oxide and Vulcan XC-72 were both synthesized via a modified sodium borohydride reduction method. The catalysts were characterized by means of powder X-ray diffraction and cyclic voltammetry. Linear sweep voltammetry, open circuit potential curves and chronoamperometry were employed to evaluate the activities of the catalysts. The results show the particle size of Pd in the Pd electrocatalysts supported on antimony tin oxide catalyst is about 2.5 nm, which is smaller than that of the Pd electrocatalysts supported on Vulcan XC-72 (about 6.3 nm), and the surface area of the Pd electrocatalysts supported on antimony tin oxide electrode is larger than that of the Pd electrocatalysts supported on Vulcan XC-72 electrode. The Pd catalyst supported on antimony tin oxide shows superior performance to the catalyst supported on Vulcan XC-72.
References
[1] G.H.Miley, N.Luo, J.Mather: J. Power Sources. 165 (2007) 509. 10.1016/j.jpowsour.2006.10.062Search in Google Scholar
[2] C.Ponce de León, F.C.Walsh, C.Patrissi: J. Electrochem. Commun.10 (2008) 1610. 10.1016/j.elecom.2008.08.006Search in Google Scholar
[3] L.Gu, N.Luo, G.H.Miley: J. Power Sources173 (2007) 77. 10.1016/j.jpowsour.2007.05.005Search in Google Scholar
[4] G.Selvarani, S.K.Prashant, A.K.Sahu: J. Power Sources178 (2008) 86. 10.1016/j.jpowsour.2007.11.115Search in Google Scholar
[5] D.Cao, D.Chen, J.Lan: J. Power Sources190 (2009) 346. 10.1016/j.jpowsour.2008.12.134Search in Google Scholar
[6] Ø.Hasvold, K.H.Johansen, O.Mollestad: J. Power Sources80 (1999) 254. 10.1016/S0378-7753(98)00266-3Search in Google Scholar
[7] N.A.Choudhury, R.K.Raman, S.Sampath: J. Power Sources143 (2005) 1. 10.1016/j.jpowsour.2004.08.059Search in Google Scholar
[8] R.R.Bessette, J.M.Cichon, D.W.Dischert: J. Power Sources80 (1999) 248. 10.1016/S0378-7753(98)00265-1Search in Google Scholar
[9] M.G.Medeiros, R.R.Bessette, C.M.Deschenes: J. Power Sources136 (2004) 226. 10.1016/j.jpowsour.2004.03.024Search in Google Scholar
[10] A.L.Morais, J.R.C.Salgado, B.Šljukić, D.M.F.Santos, C.A.C.Sequeira: Int. J. Hydrogen Energy37 (2012) 14143. 10.1016/j.ijhydene.2012.07.092Search in Google Scholar
[11] F.Yang, K.Cheng, T.Wu, Y.Zhang, J.Yin, G.Wang, D.Cao: J. Power Sources233 (2013) 252. 10.1016/j.jpowsour.2013.01.087Search in Google Scholar
[12] L.Sun, D.Cao, G.Wang: J. Appl. Electrochem.38 (2008) 141. 10.1007/s10800-008-9542-2Search in Google Scholar
[13] K.Y.Chan, J.Ding, J.W.Ren: J. Mater. Chem.14 (2004) 505. 10.1039/b314224 hSearch in Google Scholar
[14] A.C.C.Tseung, K.Y.Chen: Catal. Today38 (1997) 439. 10.1016/S0920-5861(97)00053-9Search in Google Scholar
[15] B.Moreno, E.Chinarro, J.L.G.Fierro: J. Power. Sources169 (2007) 98. 10.1016/j.jpowsour.2007.01.051Search in Google Scholar
[16] A.L.Santos, D.Profeti, P.Olivi: Electrochim. Acta.50 (2005) 2615. 10.1016/j.electacta.2004.10.040Search in Google Scholar
[17] H.L.Pang, X.H.Zhang, X.X.Zhong: J. Colloid Interface Sci.319 (2008) 193. 10.1016/j.jcis.2007.10.046Search in Google Scholar PubMed
[18] I.Saadeddin, B.Pecquenard, J.P.Manaud: Appl. Surf. Sci.253 (2007) 5240. 10.1016/j.apsusc.2006.11.049Search in Google Scholar
[19] K.S.Lee, I.S.Park, Y.H.Cho: J. Catal.258 (2008) 143. 10.1016/j.jcat.2008.06.002Search in Google Scholar
[20] É.C.G.Rufino, P.Olivi: Int. J. Hydrogen Energy.35 (2010) 13298. 10.1016/j.ijhydene.2010.09.020Search in Google Scholar
[21] D.J.You, K.Kwon, C.Pa: Catal. Today146 (2009) 15. 10.1016/j.cattod.2008.12.004Search in Google Scholar
[22] E.J.Mittemeijer, U.Welzel: Z. Kristallogr.223 (2008) 552. 10.1524/zkri.2008.1213Search in Google Scholar
[23] W.S.Cardoso, M.S.P.Francisco, A.M.S.Lucho: Solid State Ionics167 (2004) 165. 10.1016/j.ssi.2003.12.017Search in Google Scholar
[24] K.W.Park, K.S.Seol: Electrochem. Commun.9 (2007) 2256. 10.1016/j.elecom.2006.08.031Search in Google Scholar
[25] T.Chierchie, C.Mayer, W.J.Lorenz: J. Electroanal. Chem.135 (1982) 211. 10.1016/0368-1874(82)85121-6Search in Google Scholar
[26] X.Jing, D.Cao, Y.Liu, G.Wang, J.Yin, Q.Wen, Y.Gao: J. Electroanal. Chem.658 (2011) 46. 10.1016/j.jelechem.2011.04.025Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Thermodynamic modeling of the In–Pt–Sb system
- Classical controlled rolling of low C steels microalloyed with Ti and Mo
- Development of carbide intermetallic layer by electric discharge alloying on AISI-D2 tool steel and its wear resistance
- Comparison of fatigue crack growth rate of selective laser sintered RapidSteel via computational fracture mechanics
- Wear resistance and fracture mechanics of WC–Co composites
- Thermal expansion behavior of CNT/Ag nanocomposite
- Thermophysical properties of solid phase rhodium measured by the pulse calorimetry technique over a wide temperature range
- Influence of Co3O4 addition on the ionic conductivity and microstructural properties of yttria-stabilized zirconia (8YSZ)
- High-activity of Pd catalyst supported on antimony tin oxide for hydrogen peroxide electroreduction
- Investigation of low k interfacial layer characteristics of LaAlO3 thin films grown on Si (100)
- In-situ catalytic growth of MgAl2O4 spinel whiskers in MgO–C refractories
- Short Communications
- Preparation and characterization of boron nitride/carbon fiber composite with high specific surface area
- Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution
- Effect of grain size on the microstructure and mechanical properties of Mg-4Y-3Nd-0.5Zr alloy
- People
- Professor Ulrich Martin on his 65th birthday
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Thermodynamic modeling of the In–Pt–Sb system
- Classical controlled rolling of low C steels microalloyed with Ti and Mo
- Development of carbide intermetallic layer by electric discharge alloying on AISI-D2 tool steel and its wear resistance
- Comparison of fatigue crack growth rate of selective laser sintered RapidSteel via computational fracture mechanics
- Wear resistance and fracture mechanics of WC–Co composites
- Thermal expansion behavior of CNT/Ag nanocomposite
- Thermophysical properties of solid phase rhodium measured by the pulse calorimetry technique over a wide temperature range
- Influence of Co3O4 addition on the ionic conductivity and microstructural properties of yttria-stabilized zirconia (8YSZ)
- High-activity of Pd catalyst supported on antimony tin oxide for hydrogen peroxide electroreduction
- Investigation of low k interfacial layer characteristics of LaAlO3 thin films grown on Si (100)
- In-situ catalytic growth of MgAl2O4 spinel whiskers in MgO–C refractories
- Short Communications
- Preparation and characterization of boron nitride/carbon fiber composite with high specific surface area
- Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution
- Effect of grain size on the microstructure and mechanical properties of Mg-4Y-3Nd-0.5Zr alloy
- People
- Professor Ulrich Martin on his 65th birthday
- DGM News
- DGM News