Home Technology Wear resistance and fracture mechanics of WC–Co composites
Article
Licensed
Unlicensed Requires Authentication

Wear resistance and fracture mechanics of WC–Co composites

  • Saleh Kaytbay and Medhat El-Hadek
Published/Copyright: June 1, 2014
Become an author with De Gruyter Brill

Abstract

Manufacturing of WC–Co composites using the electroless precipitation method at different sintering temperatures of 1 100, 1 250, 1 350 and 1 500 °C was successfully achieved. The chemical composition of the investigated materials was 90 wt.% WC with 10 wt.% Co, and 80 wt.% WC with 20 wt.% Co. The specific density, densification, and Vickers microhardness measurements were found to increase with increased sintering temperature for both the WC–Co compositions. The composites of tungsten carbide with 10 wt.% Co had a higher specific density and Vickers microhardness measurements than those for the composites of tungsten carbide with 20 wt.% Co. Composites with WC-10 wt.% Co had better wear resistance. The stress–strain and transverse rupture strength increased monotonically with the increase in sintering temperatures, agreeing with the material hardness and wear resistance behavior. Fractographical scanning electron microscopy analysis of the fracture surface demonstrated a rough characteristic conical shape failure in the direction of the maximum shear stress. A proposed mechanism for the formation of the conical fracture surface under compression testing is presented.


*Correspondence address, Prof. Eng. Medhat Awad El-Hadek, Department of Production and Mechanical Design, Faculty of Engineering, Port Fouad 42523, Port-Said, Egypt, Tel.: +2 0100 827 1778, Fax: +2 066 3400 936, E-mail:

References

[1] A.Gabriel, H.Pastor, D.M.Deo, S.Basu, C.H.Allibert: Sintering85 (1987) 379. 10.1007/978-1-4613-2851-3_41.Search in Google Scholar

[2] W.D.Schubert, H.Neumeister, G.Kinger, B.Lux: Int. J. Refract. Metals. Hard. Mater.16 (1998) 133. 10.1016/S0263-4368(98)00028-6.Search in Google Scholar

[3] G.S.Upadhyaya: Mater. Des.22 (2001) 483. 10.1016/S0261-3069(01)00007-3.Search in Google Scholar

[4] C.Pascal, A.Thomazic, A.Antoni-Zdziobek, J.-M.Chaix: Int. J. Mater. Res.103 (2012) 296. 10.3139/146.110647.Search in Google Scholar

[5] L.J.Prakash: Int. J. Refract. Metals. Hard. Mater.13 (1995) 257. 10.1016/0263-4368(95)92672-7.Search in Google Scholar

[6] E.O.Correa, J.N.Santos, A.N.Klein: Int. J. Mater. Res.102 (2011) 1369. 10.3139/146.110593.Search in Google Scholar

[7] G.Gille, B.Szesny, K.Dreyer, H.van den Berg, J.Schmidt, T.Gestrich, G.Leitner: Int. J. Refract. Metals. Hard. Mater.20 (2002) 3. 10.1016/S0263-4368(01)00066-X.Search in Google Scholar

[8] H.C.Kim, I.K.Jeong, I.J.Shon, I.Y.Ko, J.M.Doh: Int. J. Refract. Metals. Hard. Mater.25 (2007) 336. 10.1016/j.ijrmhm.2006.09.001.Search in Google Scholar

[9] U.Beste, S.Jacobson: Wear264 (2008) 1129. 10.1016/j.wear.2007.01.030.Search in Google Scholar

[10] K.Frisk, A.Markström: Int. J. Mater. Res.99 (2008) 287. 10.3139/146.101632.Search in Google Scholar

[11] F.R.N.Nabarro, B.A.Bilby: Int. J. Mater. Res.93 (2002) 602. DOI: http://www.ijmr.de/MK020602.Search in Google Scholar

[12] M.El-Hadek, S.Kaytbay: Int. J. Mech. Mater. Des.4 (2008) 63. 10.1007/s10999-008-9058-2.Search in Google Scholar

[13] M.El-Hadek, S.Kaytbay: Strain45 (2009) 506. 10.1111/j.1475-1305.2008.00552.x.Search in Google Scholar

[14] M.El-Hadek, S.Kaytbay: Mater. Manuf. Processes.28 (2013) 1003. 10.1080/10426914.2012.736662.Search in Google Scholar

[15] C.W.Morton, D.J.Wills, K.Stjernberg: Int. J. Refract. Metals. Hard. Mater.23 (2005) 287. 10.1016/j.ijrmhm.2005.05.011.Search in Google Scholar

[16] R.W.Armstrong: Mater.4 (2011) 1287. 10.3390/ma4071287.Search in Google Scholar PubMed PubMed Central

[17] K.Choi, N.M.Hwang, D.-Y.Kim: J. Powder. Metall.43 (2000) 168. 10.1179/003258900665943.Search in Google Scholar

[18] L.S.Sigl, H.E.Exner: Metall. Mater. Trans. A.18 (1987) 1299. 10.1007/BF02647199.Search in Google Scholar

[19] J.L.Chermant, F.Osterstock: J. Mater. Sci.11 (1976) 1939. 10.1007/BF00708272.Search in Google Scholar

[20] M.T.Laugier: J. Mater. Sci. Lett.4 (1985) 207. 10.1007/BF00728078.Search in Google Scholar

[21] D.A.Stewart, P.H.Shipway, D.G.McCartney: Wear225 (1999) 789. 10.1016/S0043-1648(99)00032-0.Search in Google Scholar

[22] Y.C.Zhu, C.X.Ding, K.Yukimura, T.D.Xiao, P.R.Strutt: Ceramics. Int.27 (2001) 669. 10.1016/S0272-8842(01)00016-5.Search in Google Scholar

[23] X.Zhang, S.Yang, C.Zhao, Y.Lu, X.Liu, C.Wang: Int. J. Mater. Res.104 (2013) 836. 10.3139/146.110935.Search in Google Scholar

[24] Sandvik” is an engineering group in tooling, materials technology, mining and construction, http://www.sandvik.com/en/, (Access July 2013).Search in Google Scholar

[25] Y.Shacham-Diamand, V.M.Dubin: Microelectron. Eng.33 (1997) 47. 10.1016/S0167-9317(96)00030-5.Search in Google Scholar

[26] S.Shukla, S.Seal, Z.Rahaman, K.Scammon: Mater. Lett.57 (2002) 151. 10.1016/S0167-577X(02)00722-X.Search in Google Scholar

[27] P.Arató, L.Bartha, R.Porat, S.Berger, A.Rosen: Nanostruct. Mater.10 (1998) 245. 10.1016/S0965-9773(98)00067-1.Search in Google Scholar

[28] R.Frykholm, M.Ekroth, B.Jansson, J.Ågren, H.-O.Andrén: Acta Materialia51 (2003) 1115. 10.1016/S1359-6454(02)00515-3.Search in Google Scholar

[29] “MPIF Standard 42. Determination of density of compacted or sintered metal powder products”, Standard test methods for metal powders and powder metallurgy products, Metal Powder Industries Federation, Princeton, NJ, USA (2000).Search in Google Scholar

[30] S.Guicciardi, C.Melandri, F.Lucchini, G.de Portu: Wear.252 (2002) 1001. 10.1016/S0043-1648(02)00066-2.Search in Google Scholar

[31] “MPIF standard 41: Determination of transverse rupture strength of sintered metal powder test specimen”, Standard test methods for metal powders and powder metallurgy products, Metal Powder Industries Federation, Princeton, NJ, USA (1991).Search in Google Scholar

[32] B.Roebuck, E.A.Almond: Int. Mater. Rev.33 (1988) 90. 10.1179/095066088790324094.Search in Google Scholar

[33] M.Nakamura, J.Gurland: Metall. Mater. Trans. A11 (1980) 141. 10.1007/BF02700449.Search in Google Scholar

[34] N.Ingelstrom, H.Nordberg: Eng. Fract. Mech.6 (1974) 597. 10.1016/0013-7944(74)90016-2.Search in Google Scholar

Received: 2013-10-11
Accepted: 2013-12-17
Published Online: 2014-06-01
Published in Print: 2014-06-12

© 2014, Carl Hanser Verlag, München

Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111069/html
Scroll to top button