Wear resistance and fracture mechanics of WC–Co composites
-
Saleh Kaytbay
and Medhat El-Hadek
Abstract
Manufacturing of WC–Co composites using the electroless precipitation method at different sintering temperatures of 1 100, 1 250, 1 350 and 1 500 °C was successfully achieved. The chemical composition of the investigated materials was 90 wt.% WC with 10 wt.% Co, and 80 wt.% WC with 20 wt.% Co. The specific density, densification, and Vickers microhardness measurements were found to increase with increased sintering temperature for both the WC–Co compositions. The composites of tungsten carbide with 10 wt.% Co had a higher specific density and Vickers microhardness measurements than those for the composites of tungsten carbide with 20 wt.% Co. Composites with WC-10 wt.% Co had better wear resistance. The stress–strain and transverse rupture strength increased monotonically with the increase in sintering temperatures, agreeing with the material hardness and wear resistance behavior. Fractographical scanning electron microscopy analysis of the fracture surface demonstrated a rough characteristic conical shape failure in the direction of the maximum shear stress. A proposed mechanism for the formation of the conical fracture surface under compression testing is presented.
References
[1] A.Gabriel, H.Pastor, D.M.Deo, S.Basu, C.H.Allibert: Sintering85 (1987) 379. 10.1007/978-1-4613-2851-3_41.Search in Google Scholar
[2] W.D.Schubert, H.Neumeister, G.Kinger, B.Lux: Int. J. Refract. Metals. Hard. Mater.16 (1998) 133. 10.1016/S0263-4368(98)00028-6.Search in Google Scholar
[3] G.S.Upadhyaya: Mater. Des.22 (2001) 483. 10.1016/S0261-3069(01)00007-3.Search in Google Scholar
[4] C.Pascal, A.Thomazic, A.Antoni-Zdziobek, J.-M.Chaix: Int. J. Mater. Res.103 (2012) 296. 10.3139/146.110647.Search in Google Scholar
[5] L.J.Prakash: Int. J. Refract. Metals. Hard. Mater.13 (1995) 257. 10.1016/0263-4368(95)92672-7.Search in Google Scholar
[6] E.O.Correa, J.N.Santos, A.N.Klein: Int. J. Mater. Res.102 (2011) 1369. 10.3139/146.110593.Search in Google Scholar
[7] G.Gille, B.Szesny, K.Dreyer, H.van den Berg, J.Schmidt, T.Gestrich, G.Leitner: Int. J. Refract. Metals. Hard. Mater.20 (2002) 3. 10.1016/S0263-4368(01)00066-X.Search in Google Scholar
[8] H.C.Kim, I.K.Jeong, I.J.Shon, I.Y.Ko, J.M.Doh: Int. J. Refract. Metals. Hard. Mater.25 (2007) 336. 10.1016/j.ijrmhm.2006.09.001.Search in Google Scholar
[9] U.Beste, S.Jacobson: Wear264 (2008) 1129. 10.1016/j.wear.2007.01.030.Search in Google Scholar
[10] K.Frisk, A.Markström: Int. J. Mater. Res.99 (2008) 287. 10.3139/146.101632.Search in Google Scholar
[11] F.R.N.Nabarro, B.A.Bilby: Int. J. Mater. Res.93 (2002) 602. DOI: http://www.ijmr.de/MK020602.Search in Google Scholar
[12] M.El-Hadek, S.Kaytbay: Int. J. Mech. Mater. Des.4 (2008) 63. 10.1007/s10999-008-9058-2.Search in Google Scholar
[13] M.El-Hadek, S.Kaytbay: Strain45 (2009) 506. 10.1111/j.1475-1305.2008.00552.x.Search in Google Scholar
[14] M.El-Hadek, S.Kaytbay: Mater. Manuf. Processes.28 (2013) 1003. 10.1080/10426914.2012.736662.Search in Google Scholar
[15] C.W.Morton, D.J.Wills, K.Stjernberg: Int. J. Refract. Metals. Hard. Mater.23 (2005) 287. 10.1016/j.ijrmhm.2005.05.011.Search in Google Scholar
[16] R.W.Armstrong: Mater.4 (2011) 1287. 10.3390/ma4071287.Search in Google Scholar PubMed PubMed Central
[17] K.Choi, N.M.Hwang, D.-Y.Kim: J. Powder. Metall.43 (2000) 168. 10.1179/003258900665943.Search in Google Scholar
[18] L.S.Sigl, H.E.Exner: Metall. Mater. Trans. A.18 (1987) 1299. 10.1007/BF02647199.Search in Google Scholar
[19] J.L.Chermant, F.Osterstock: J. Mater. Sci.11 (1976) 1939. 10.1007/BF00708272.Search in Google Scholar
[20] M.T.Laugier: J. Mater. Sci. Lett.4 (1985) 207. 10.1007/BF00728078.Search in Google Scholar
[21] D.A.Stewart, P.H.Shipway, D.G.McCartney: Wear225 (1999) 789. 10.1016/S0043-1648(99)00032-0.Search in Google Scholar
[22] Y.C.Zhu, C.X.Ding, K.Yukimura, T.D.Xiao, P.R.Strutt: Ceramics. Int.27 (2001) 669. 10.1016/S0272-8842(01)00016-5.Search in Google Scholar
[23] X.Zhang, S.Yang, C.Zhao, Y.Lu, X.Liu, C.Wang: Int. J. Mater. Res.104 (2013) 836. 10.3139/146.110935.Search in Google Scholar
[24] “Sandvik” is an engineering group in tooling, materials technology, mining and construction, http://www.sandvik.com/en/, (Access July 2013).Search in Google Scholar
[25] Y.Shacham-Diamand, V.M.Dubin: Microelectron. Eng.33 (1997) 47. 10.1016/S0167-9317(96)00030-5.Search in Google Scholar
[26] S.Shukla, S.Seal, Z.Rahaman, K.Scammon: Mater. Lett.57 (2002) 151. 10.1016/S0167-577X(02)00722-X.Search in Google Scholar
[27] P.Arató, L.Bartha, R.Porat, S.Berger, A.Rosen: Nanostruct. Mater.10 (1998) 245. 10.1016/S0965-9773(98)00067-1.Search in Google Scholar
[28] R.Frykholm, M.Ekroth, B.Jansson, J.Ågren, H.-O.Andrén: Acta Materialia51 (2003) 1115. 10.1016/S1359-6454(02)00515-3.Search in Google Scholar
[29] “MPIF Standard 42. Determination of density of compacted or sintered metal powder products”, Standard test methods for metal powders and powder metallurgy products, Metal Powder Industries Federation, Princeton, NJ, USA (2000).Search in Google Scholar
[30] S.Guicciardi, C.Melandri, F.Lucchini, G.de Portu: Wear.252 (2002) 1001. 10.1016/S0043-1648(02)00066-2.Search in Google Scholar
[31] “MPIF standard 41: Determination of transverse rupture strength of sintered metal powder test specimen”, Standard test methods for metal powders and powder metallurgy products, Metal Powder Industries Federation, Princeton, NJ, USA (1991).Search in Google Scholar
[32] B.Roebuck, E.A.Almond: Int. Mater. Rev.33 (1988) 90. 10.1179/095066088790324094.Search in Google Scholar
[33] M.Nakamura, J.Gurland: Metall. Mater. Trans. A11 (1980) 141. 10.1007/BF02700449.Search in Google Scholar
[34] N.Ingelstrom, H.Nordberg: Eng. Fract. Mech.6 (1974) 597. 10.1016/0013-7944(74)90016-2.Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Thermodynamic modeling of the In–Pt–Sb system
- Classical controlled rolling of low C steels microalloyed with Ti and Mo
- Development of carbide intermetallic layer by electric discharge alloying on AISI-D2 tool steel and its wear resistance
- Comparison of fatigue crack growth rate of selective laser sintered RapidSteel via computational fracture mechanics
- Wear resistance and fracture mechanics of WC–Co composites
- Thermal expansion behavior of CNT/Ag nanocomposite
- Thermophysical properties of solid phase rhodium measured by the pulse calorimetry technique over a wide temperature range
- Influence of Co3O4 addition on the ionic conductivity and microstructural properties of yttria-stabilized zirconia (8YSZ)
- High-activity of Pd catalyst supported on antimony tin oxide for hydrogen peroxide electroreduction
- Investigation of low k interfacial layer characteristics of LaAlO3 thin films grown on Si (100)
- In-situ catalytic growth of MgAl2O4 spinel whiskers in MgO–C refractories
- Short Communications
- Preparation and characterization of boron nitride/carbon fiber composite with high specific surface area
- Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution
- Effect of grain size on the microstructure and mechanical properties of Mg-4Y-3Nd-0.5Zr alloy
- People
- Professor Ulrich Martin on his 65th birthday
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Thermodynamic modeling of the In–Pt–Sb system
- Classical controlled rolling of low C steels microalloyed with Ti and Mo
- Development of carbide intermetallic layer by electric discharge alloying on AISI-D2 tool steel and its wear resistance
- Comparison of fatigue crack growth rate of selective laser sintered RapidSteel via computational fracture mechanics
- Wear resistance and fracture mechanics of WC–Co composites
- Thermal expansion behavior of CNT/Ag nanocomposite
- Thermophysical properties of solid phase rhodium measured by the pulse calorimetry technique over a wide temperature range
- Influence of Co3O4 addition on the ionic conductivity and microstructural properties of yttria-stabilized zirconia (8YSZ)
- High-activity of Pd catalyst supported on antimony tin oxide for hydrogen peroxide electroreduction
- Investigation of low k interfacial layer characteristics of LaAlO3 thin films grown on Si (100)
- In-situ catalytic growth of MgAl2O4 spinel whiskers in MgO–C refractories
- Short Communications
- Preparation and characterization of boron nitride/carbon fiber composite with high specific surface area
- Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution
- Effect of grain size on the microstructure and mechanical properties of Mg-4Y-3Nd-0.5Zr alloy
- People
- Professor Ulrich Martin on his 65th birthday
- DGM News
- DGM News