Startseite Methods of segregation analysis applied to simulated multicomponent multiphase microstructures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Methods of segregation analysis applied to simulated multicomponent multiphase microstructures

  • Kathrin Grätz , Janin Eiken und Rainer Schmid-Fetzer
Veröffentlicht/Copyright: 7. Februar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Advanced microstructure simulation models can predict solute segregation in 2D and 3D space, which often leads to outputs of large arrays of concentration values with a multitude of detailed information that hinders straightforward evaluations. The target of this study is to establish a common evaluation method for both simulation results and experimental data as a standard for quantitative comparison and validation. For this purpose, a methodology is adopted from experimental segregation analysis to transform the multi-dimensional data into meaningful 1D segregation profiles, which can easily be plotted and discussed. As an application example, a directional solidification experiment on an AZ31 magnesium alloy is selected and the solidification process is simulated using the phase-field method. The subsequently obtained 1D segregation profiles are compared to measured segregation profiles. As part of the study, two common sorting methods are evaluated with respect to their applicability to recover the general segregation behavior and the solidification path, as well as to handle numerical noise.


* Correspondence address, Dipl.-Ing. Kathrin Grätz, Institute of Physical Metallurgy and Metal Physics, RWTH Aachen University, Kopernikusstr. 14, 52056 Aachen, Germany, Tel: +49 241 80 28298, Fax: +49 241 80 22301, E-mail:

References

[1] D.H.StJohn, A.K.Dahle, T.Abbott, M.D.Nave, MaQian: Magnesium Technology (2003) 95100.Suche in Google Scholar

[2] B.L.Mordike, T.Ebert: Mater. Sci. Eng. A302 (2001) 37. 10.1016/S0921-5093(00)01351-4Suche in Google Scholar

[3] D.Mirkovic, R.Schmid-Fetzer: Metall. Mater. Trans. A40 (2009) 958. 10.1007/s11661-009-9787-3Suche in Google Scholar

[4] D.Mirkovic, R.Schmid-Fetzer: Metall. Mater. Trans. A40 (2009) 974. 10.1007/s11661-009-9787-3Suche in Google Scholar

[5] M.Ganesan, D.Dye, P.D.Lee: Metall. Mater. Trans. A36 (2005) 2191. 10.1007/s11661-005-0338-2Suche in Google Scholar

[6] F.Xie, X.Yan, L.Ding, F.Zhang, S.Chen, M.G.Chu, Y.A.Chang: Mater. Sci. Eng. A355 (2003) 144. 10.1016/S0921-5093(03)00056-XSuche in Google Scholar

[7] MICRESS® 5.2 (MICROstructure Evolution Simulation Software), www.micress.de.Suche in Google Scholar

[8] Thermo-Calc® 5.0 (Thermo-Calc Software), www.thermocalc.com.Suche in Google Scholar

[9] M.Ohno, D.Mirkovic, R.Schmid-Fetzer, Acta Materialia54 (2006) 3883. 10.1016/j.actamat.2006.04.022Suche in Google Scholar

[10] J.Eiken, B.Böttger, I.Steinbach: Phys. Rev. E73 (2006) 066122. 10.1103/PhysRevE.73.066122Suche in Google Scholar PubMed

[11] J.Eiken: A Phase-Field Model for Technical Alloy Solidification, Shaker Verlag (2010) ISBN 978-3-8322-9010-8.Suche in Google Scholar

[12] H.H.Landolt, R.Börnstein: Landolt-Börnstein New Series – Group III Condensed Matter, vol. 26 Diffusion in Solid Metals and Alloys; Springer Verlag (1990).Suche in Google Scholar

[13] J.Cermak, I.Stloukal: Phys. Status Solidi A203 (2006) 2386. 10.1002/pssa.200622219Suche in Google Scholar

[14] J.Cermak, I.Stloukal: Int. J. Mater. Res.97 (2006) 1476.10.3139/146.101409Suche in Google Scholar

[15] S.Fujikawa: J. Japan Inst. of Light Metals42 (1992) 822. 10.2464/jilm.42.822Suche in Google Scholar

[16] J.Eiken: Int. J. Mater. Res.4 (2010) 503. 10.3139/146.110302Suche in Google Scholar

[17] M.D.Nave, A.K.Dahle, D.H.StJohn: Magnesium Technology (2000) 243.Suche in Google Scholar

[18] A.K.Dahle, Y.C.Lee, M.D.Nave, P.L.Schaffer, D.H.StJohn: J. Light Metals1 (2001) 61. 10.1016/S1471-5317(00)00007-9Suche in Google Scholar

[19] A.Hazotte, J.Eiken, J.Lacaze: 8th Int. Conf. on Magnesium Alloys and their Applications (2009) 398.Suche in Google Scholar

[20] J.Lacaze, G.Lesoult: Mater. Sci. Eng. A173 (1993) 119. 10.1016/0921-5093(93)90199-OSuche in Google Scholar

Received: 2013-07-02
Accepted: 2013-08-21
Published Online: 2014-02-07
Published in Print: 2014-02-10

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 18.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111008/html
Button zum nach oben scrollen