Effect of rhenium addition on the strengthening of chromium–alumina composite materials
-
Marcin Chmielewski
, Katarzyna Pietrzak , Agata Strojny-Nedza , Beata Dubiel und Aleksandra Czyrska-Filemonowicz
Abstract
Chromium–alumina composites are well known for their good mechanical properties in comparison to pure ceramics or metals. These composites are characterized by high hardness and high mechanical strength. The aim of the present work was to improve the properties of chromium–alumina composites even more and expand the range of their possible applications by addition of rhenium. To achieve this goal, chromium–alumina composites containing 2 and 5 vol.% of rhenium were produced via powder metallurgy. The microstructural characterization of the processed material was performed using light microscopy, scanning and transmission electron microscopy as well as X-ray diffraction analysis. Measurement of selected properties such as Young's modulus, bend strength and hardness revealed an advantageous influence of rhenium additions. The results are discussed in terms of the influence of rhenium volume content on the microstructure and on the physical and mechanical properties of the chromium–alumina composites. The solid solution is only partially formed. The properties strongly depend on the amount and distribution of both aluminium oxide and rhenium content.
References
[1] M.Chmielewski, K.Pietrzak: J. Eur. Ceram. Soc.27 (2007) 1273. 10.1016/j.jeurceramsoc.2006.05.093Suche in Google Scholar
[2] M.Chmielewski, J.Dutkiewicz, D.Kaliński, L.Lityńska-Dobrzyńska, K.Pietrzak, A.Strojny-Nedza: Arch. Metal. Mater.57 (2012) 687.10.2478/v10172-012-0074-8Suche in Google Scholar
[3] P.Franke, C.Heintze, F.Bergner, T.Weissgaerber: Mater. Test.52 (2010) 133.10.3139/120.110115Suche in Google Scholar
[4] W.Węglewski, M.Basista, M.Chmielewski, K.Pietrzak: Compos. Part B-Eng.43 (2012) 255. 10.1016/j.compositesb.2011.07.016Suche in Google Scholar
[5] K.Pietrzak, D.Kaliński, M.Chmielewski: J. Eur. Ceram. Soc.27 (2007) 1281. 10.1016/j.jeurceramsoc.2006.04.102Suche in Google Scholar
[6] J.L.Guichard, O.Tillement, A.Mocellin: J. Eur. Ceram. Soc.18 (1998) 1743. 10.1016/S0955-2219(98)00009-0Suche in Google Scholar
[7] Y.Ji, J.A.Yeomans: J. Eur. Ceram. Soc.22 (2002) 1927. 10.1016/S0955-2219(01)00528-3Suche in Google Scholar
[8] G.Geandier, A.Hazotte, S.Denis, A.Mocellin, E.Maire: Scripta Mater.48 (2003) 1219. 10.1016/S1359-6462(02)00531-6Suche in Google Scholar
[9] I.-J.Shon, H.-S.Kang, D.-M.Lee, K.-I.Na, I.-Y.Ko: Adv. Mat. Res.123–125 (2010) 197. 10.4028/www.scientific.net/AMR.123-125.197Suche in Google Scholar
[10] S.Shamsuddin, S.Jamaludin, Z.Hussain, Z.Ahmad: J. Phys. Sci.19 (2008) 89.Suche in Google Scholar
[11] M.Leverkoehne, A.Dakskobler, M.Valant, R.Janssen, T.Kosmac: J. Eur. Ceram. Soc.25 (2005) 65. 10.1016/j.jeurceramsoc.2004.01.012Suche in Google Scholar
[12] L.Gimeno-Fabra: Design, Manufacture and Properties of Cr–Re Alloys for Application in Satellite Thrusters, Doctoral Thesis, Universitat Politècnica de Catalunya (2006).Suche in Google Scholar
[13] W.Weglewski, K.Bochenek, M.Basista, Th.Schubert, U.Jehring, J.Litniewski, S.Mackiewicz: Comp. Mater. Sci.77 (2013) 19. 10.1016/j.commatsci.2013.04.007Suche in Google Scholar
[14] P.Caron, T.Khan: Aerosp. Sci. Technol.3 (1999) 513. 10.1016/S1270-9638(99)00108-XSuche in Google Scholar
[15] V.Petrovich, M.Haurylau, S.Volchek: Sens. Actuators A-Phys.99 (2002) 45. 10.1016/S0924-4247(01)00896-2Suche in Google Scholar
[16] R.Kojima, H.Enomoto, M.Muhler, K.Aika: Appl. Catal. A-Gen.246 (2003) 311. 10.1016/S0926-860X(03)00062-0Suche in Google Scholar
[17] J.Roger, F.Audubert, Y. LePetitcorps: J. Alloy. Compd.475 (2009) 635. 10.1016/j.jallcom.2008.07.141Suche in Google Scholar
[18] M.Chmielewski, D.Kalinski, K.Pietrzak, W.Wlosinski: Arch. Metal. Mater.55 (2010) 579.Suche in Google Scholar
[19] D.Kaliński, M.Chmielewski, K.Pietrzak: Arch. Metal. Mater.57 (2012) 694.Suche in Google Scholar
[20] T.Fett, D.Munz: J. Am. Ceram. Soc.75 (1992) 958. 10.1111/j.1151–2916.1992.tb04166.xSuche in Google Scholar
[21] W.Wlosinski: Al2O3–Cu and Al2O3–Cr composite technology and properties, in: G.S.Upadhyaya (Ed.), Sintered Metal – Ceramic Composite, Materials Science Monographs 25, Amsterdam, 1984.Suche in Google Scholar
© 2014, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Experimental determination of a representative texture and insight into the range of significant neighboring grain interactions via orientation and misorientation statistics
- Methods of segregation analysis applied to simulated multicomponent multiphase microstructures
- Nanoindentation responses of Si–Ge multilayers
- Microstructural and thermodynamic investigations on friction stir welded Mg/Al-joints
- Ingot metallurgy and microstructural characterization of Ti–Ta alloys
- Microstructural evolution of aluminium–copper alloys during the downward directional solidification process
- Indium ion cementation onto aluminum plates in hydrochloric acid solutions: a kinetic perspective
- Development of Sn–Cu–Sb alloys for making lead- and bismuth-free pewter
- The effect of Sn addition and sulfide ion concentration on the corrosion behavior of Cu-35Zn in NaCl solution
- Synthesis and characteristics of precipitation hardened Cu–Cr alloy and multiply hardened Cu–Cr–Al2O3 nanocomposite obtained using powder metallurgy techniques
- Effect of rhenium addition on the strengthening of chromium–alumina composite materials
- Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)
- Short Communications
- Properties of aluminium coatings produced using manual and robotized flame spraying processes
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Experimental determination of a representative texture and insight into the range of significant neighboring grain interactions via orientation and misorientation statistics
- Methods of segregation analysis applied to simulated multicomponent multiphase microstructures
- Nanoindentation responses of Si–Ge multilayers
- Microstructural and thermodynamic investigations on friction stir welded Mg/Al-joints
- Ingot metallurgy and microstructural characterization of Ti–Ta alloys
- Microstructural evolution of aluminium–copper alloys during the downward directional solidification process
- Indium ion cementation onto aluminum plates in hydrochloric acid solutions: a kinetic perspective
- Development of Sn–Cu–Sb alloys for making lead- and bismuth-free pewter
- The effect of Sn addition and sulfide ion concentration on the corrosion behavior of Cu-35Zn in NaCl solution
- Synthesis and characteristics of precipitation hardened Cu–Cr alloy and multiply hardened Cu–Cr–Al2O3 nanocomposite obtained using powder metallurgy techniques
- Effect of rhenium addition on the strengthening of chromium–alumina composite materials
- Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)
- Short Communications
- Properties of aluminium coatings produced using manual and robotized flame spraying processes
- DGM News
- DGM News