Home Nanoindentation responses of Si–Ge multilayers
Article
Licensed
Unlicensed Requires Authentication

Nanoindentation responses of Si–Ge multilayers

  • Derming Lian
Published/Copyright: February 7, 2014
Become an author with De Gruyter Brill

Abstract

In this study, we employed the nanoindentation technique to evaluate the pop-in events of Si–Ge multilayers under extra-low forces. X-ray diffraction revealed a shift of the peaks of the Ge atoms from 68.70 to 68.50°, due to gradual mixing of previously isolated Si and Ge atoms into an SiGe compound, upon increasing the annealing temperature. Atomic force microscopy images of the vicinity near the triangular indentation mark revealed that the primarily plastic deformation, the pop-in event observed in the load–displacement curve, was based on slightly active dislocation nucleation and propagation during treatment with the artificial indenter. The samples annealed at RT, 400, 500, and 600°C exhibited hardnesses (H) of 18.6 ± 1.2, 17.9 ± 1.1, 18.9 ± 1.2, and 15.0 ± 0.8 GPa, respectively, and elastic moduli (E) of 220.0 ± 5.2, 224.9 ± 5.4, 220.7 ± 4.5, and 186.7 ± 3.8 GPa, respectively. These values reveal that elastic/plastic contact translation of the Si–Ge multilayer occurred to various extents depending upon the annealing conditions; in addition, the values of hf/hmax for the samples annealed at RT, 400, 500, and 600°C were 0.449, 0.416, 0.412, and 0.470, respectively. In a crystal structure, release of the indentation load reflects the directly compressed volume; the total penetration depth into the film was approximately 30 nm with a peak load of 500 μN. Accordingly, the annealed samples can exhibit pop-in after indentation earlier than samples treated merely at RT.


* Correspondence address, Dr. Derming Lian, No. 57, Sec. 2, Zhongshan Road, Taiping Dist., Taichung 41170, Taiwan (R.O.C.), Tel.: (+886)(4)23924505, Fax: (+886)(4)23930681, E-mail:

References

[1] S.S.Iyer, F.K.LeGoues: J. Appl. Phys.65 (1989) 4693. 10.1063/1.343245Search in Google Scholar

[2] J.M.Baribeau: Appl. Phys. Lett.57 (1990) 1052. 10.1063/1.103377Search in Google Scholar

[3] P.Dobrosz, S.J.Bull, S.H.Olsen, A.G.O'Neill: Z. Metallkd.95 (2004) 340.10.3139/146.017959Search in Google Scholar

[4] F.Heinrichsdorff, M.H.Mao, N.Kirstaedter, A.Krost, D.Bimberg, A.O.Kosogov, P.Werne: Appl. Phys. Lett.71 (1997) 22. 10.1063/1.120556Search in Google Scholar

[5] A.Erko, N.V.Abrosimov, V.Alex: Cryst. Res. Technol.37 (2002) 685. 10.1002/1521-4079(200207)37:7<685::AID-CRAT685>3.0.CO;2-ZSearch in Google Scholar

[6] F.Y.Huang, X.Zhu, M.O.Tanner, K.L.Wang: Appl. Phys. Lett.67 (1995) 566. 10.1063/1.114309Search in Google Scholar

[7] B.Schuppert, J.Schmidtchen, A.Splett, U.Fisher, T.Zinke, R.Moosburger, K.Petermann: Lightwave Technol.14 (1996) 2311. 10.1109/50.541223Search in Google Scholar

[8] N.Armour, S.Dost: Cryst. Res. Technol.45 (2010) 244. 10.1002/crat.200900639Search in Google Scholar

[9] B.C.He, C.H.Cheng, H.C.Wen, Y.S.Lai, P.F.Yang, M.H.Lin, W.F.Wu, C.P.Chou: Microelectron. Reliab.50 (2010) 63. 10.1016/j.microrel.2009.08.005Search in Google Scholar

[10] B.C.He, H.C.Wen, T.Y.Chiang, Z.C.Chang, D.Lian, W.F.Wu, C.P.Chou: Appl. Surf. Sci.256 (2010) 3299. 10.1016/j.apsusc.2009.10.012Search in Google Scholar

[11] B.C.He, H.C.Wen, M.H.Lin, Y.S.Lai, W.F.Wu, C.P.Cho: Microelectron. Reliab.50 (2010) 851. 10.1016/j.microrel.2010.02.013Search in Google Scholar

[12] T.Y.Lin, H.C.Wen, Z.C.Chang, W.K.Hsu, C.P.Chou, C.H.Tsai, D.Lian: J. Phys. Chem. Solids72 (2011) 789. 10.1016/j.jpcs.2010.10.034Search in Google Scholar

[13] J.E.Bradby, J.S.Williams, J.Wong-Leung, M.V.Swain, P.Munroe: Appl. Phys. Lett.80 (2002) 15. 10.1063/1.1436280Search in Google Scholar

[14] Y.R.Jeng, H.C.Wen, P.C.Tsai: Diamond Relat. Mater.18 (2009) 528. 10.1016/j.diamond.2008.09.019Search in Google Scholar

[15] Y.M.Chang, H.C.Wen, C.S.Yang, D.Lian, C.H.Tsai, J.S.Wang, W.F.Wu, C.P.Chou: Microelectron. Reliab.50 (2010) 1111. 10.1016/j.microrel.2010.05.003Search in Google Scholar

[16] D.Lian, H.C.Wen: Int. J. Mater. Res. in press.Search in Google Scholar

[17] C.Prieto, A.de Bernabé, R.Castañer, A.Muñoz-Martín, R.J.Jiménez-Rioboó, M.García-Heráandez, A.de Andrés: J. Phys.: Condens. Matter12 (2000) 2931. 10.1088/0953–8984/12/13/305Search in Google Scholar

[18] A.de Bernabé, C.Prieto, D.Cáceres, I.Vergara, A.G.Every, H.E.Fischer: Phys. Stat. Sol. (a)188 (2001) 1023. 10.1002/1521-396X(200112)188:3<1023::AID-PSSA1023>3.0.CO;2-ASearch in Google Scholar

[19] D.B.Aubertine, N.Ozguven, P.C.McIntyre, S.Brennan: J. Appl. Phys.94 (2005) 1557. 10.1063/1.1589600Search in Google Scholar

[20] E.E.Fullerton, Y.K.Schuller, H.Vanderstraeten, Y.Bruynseraede: Phys. Rev. B45 (1992) 9292. 10.1103/PhysRevB.45.9292Search in Google Scholar

[21] S.M.Lee, D.G.Cahill, R.Venkatasubramanian: Appl. Phys. Lett.70 (1997) 2957. 10.1063/1.118607Search in Google Scholar

[22] M.J.Wu, H.C.Wen, S.C.Wu, P.F.Yang, Y.S.Lai, W.K.Hsu, W.F.Wu, C.P.Chou: Appl. Surf. Sci.257 (2011) 8887. 10.1016/j.apsusc.2010.08.101Search in Google Scholar

[23] W.H.Yau, P.C.Tseng, D.Lian: Nucl. Instrum. Methods, B269 (2011) 1450. 10.1016/j.nimb.2011.03.009Search in Google Scholar

[24] R.O.Pilzt, J.R.Maclean, S.J.Clark, G.J.Ackland, P.D.Hatton, J.Crain: Phys. Rev. B: Condens. Matter52 (1995) 4072. 10.1103/PhysRevB.52.4072Search in Google Scholar PubMed

[25] A.P.Gerk, D.Tabor: Nature271 (1978) 732. 10.1038/271732a0Search in Google Scholar

[26] W.C.Oliver, G.M.Pharr: J. Mater. Res.19 (2004) 3. 10.1557/jmr.2004.19.1.3Search in Google Scholar

[27] Yu.I.Golovin: Phys. Solid State50 (2008) 2205. 10.1134/S106378340801006XSearch in Google Scholar

Received: 2013-03-03
Accepted: 2013-07-29
Published Online: 2014-02-07
Published in Print: 2014-02-10

© 2014, Carl Hanser Verlag, München

Downloaded on 19.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111001/html
Scroll to top button