Nanoindentation responses of Si–Ge multilayers
-
Derming Lian
Abstract
In this study, we employed the nanoindentation technique to evaluate the pop-in events of Si–Ge multilayers under extra-low forces. X-ray diffraction revealed a shift of the peaks of the Ge atoms from 68.70 to 68.50°, due to gradual mixing of previously isolated Si and Ge atoms into an SiGe compound, upon increasing the annealing temperature. Atomic force microscopy images of the vicinity near the triangular indentation mark revealed that the primarily plastic deformation, the pop-in event observed in the load–displacement curve, was based on slightly active dislocation nucleation and propagation during treatment with the artificial indenter. The samples annealed at RT, 400, 500, and 600°C exhibited hardnesses (H) of 18.6 ± 1.2, 17.9 ± 1.1, 18.9 ± 1.2, and 15.0 ± 0.8 GPa, respectively, and elastic moduli (E) of 220.0 ± 5.2, 224.9 ± 5.4, 220.7 ± 4.5, and 186.7 ± 3.8 GPa, respectively. These values reveal that elastic/plastic contact translation of the Si–Ge multilayer occurred to various extents depending upon the annealing conditions; in addition, the values of hf/hmax for the samples annealed at RT, 400, 500, and 600°C were 0.449, 0.416, 0.412, and 0.470, respectively. In a crystal structure, release of the indentation load reflects the directly compressed volume; the total penetration depth into the film was approximately 30 nm with a peak load of 500 μN. Accordingly, the annealed samples can exhibit pop-in after indentation earlier than samples treated merely at RT.
References
[1] S.S.Iyer, F.K.LeGoues: J. Appl. Phys.65 (1989) 4693. 10.1063/1.343245Suche in Google Scholar
[2] J.M.Baribeau: Appl. Phys. Lett.57 (1990) 1052. 10.1063/1.103377Suche in Google Scholar
[3] P.Dobrosz, S.J.Bull, S.H.Olsen, A.G.O'Neill: Z. Metallkd.95 (2004) 340.10.3139/146.017959Suche in Google Scholar
[4] F.Heinrichsdorff, M.H.Mao, N.Kirstaedter, A.Krost, D.Bimberg, A.O.Kosogov, P.Werne: Appl. Phys. Lett.71 (1997) 22. 10.1063/1.120556Suche in Google Scholar
[5] A.Erko, N.V.Abrosimov, V.Alex: Cryst. Res. Technol.37 (2002) 685. 10.1002/1521-4079(200207)37:7<685::AID-CRAT685>3.0.CO;2-ZSuche in Google Scholar
[6] F.Y.Huang, X.Zhu, M.O.Tanner, K.L.Wang: Appl. Phys. Lett.67 (1995) 566. 10.1063/1.114309Suche in Google Scholar
[7] B.Schuppert, J.Schmidtchen, A.Splett, U.Fisher, T.Zinke, R.Moosburger, K.Petermann: Lightwave Technol.14 (1996) 2311. 10.1109/50.541223Suche in Google Scholar
[8] N.Armour, S.Dost: Cryst. Res. Technol.45 (2010) 244. 10.1002/crat.200900639Suche in Google Scholar
[9] B.C.He, C.H.Cheng, H.C.Wen, Y.S.Lai, P.F.Yang, M.H.Lin, W.F.Wu, C.P.Chou: Microelectron. Reliab.50 (2010) 63. 10.1016/j.microrel.2009.08.005Suche in Google Scholar
[10] B.C.He, H.C.Wen, T.Y.Chiang, Z.C.Chang, D.Lian, W.F.Wu, C.P.Chou: Appl. Surf. Sci.256 (2010) 3299. 10.1016/j.apsusc.2009.10.012Suche in Google Scholar
[11] B.C.He, H.C.Wen, M.H.Lin, Y.S.Lai, W.F.Wu, C.P.Cho: Microelectron. Reliab.50 (2010) 851. 10.1016/j.microrel.2010.02.013Suche in Google Scholar
[12] T.Y.Lin, H.C.Wen, Z.C.Chang, W.K.Hsu, C.P.Chou, C.H.Tsai, D.Lian: J. Phys. Chem. Solids72 (2011) 789. 10.1016/j.jpcs.2010.10.034Suche in Google Scholar
[13] J.E.Bradby, J.S.Williams, J.Wong-Leung, M.V.Swain, P.Munroe: Appl. Phys. Lett.80 (2002) 15. 10.1063/1.1436280Suche in Google Scholar
[14] Y.R.Jeng, H.C.Wen, P.C.Tsai: Diamond Relat. Mater.18 (2009) 528. 10.1016/j.diamond.2008.09.019Suche in Google Scholar
[15] Y.M.Chang, H.C.Wen, C.S.Yang, D.Lian, C.H.Tsai, J.S.Wang, W.F.Wu, C.P.Chou: Microelectron. Reliab.50 (2010) 1111. 10.1016/j.microrel.2010.05.003Suche in Google Scholar
[16] D.Lian, H.C.Wen: Int. J. Mater. Res. in press.Suche in Google Scholar
[17] C.Prieto, A.de Bernabé, R.Castañer, A.Muñoz-Martín, R.J.Jiménez-Rioboó, M.García-Heráandez, A.de Andrés: J. Phys.: Condens. Matter12 (2000) 2931. 10.1088/0953–8984/12/13/305Suche in Google Scholar
[18] A.de Bernabé, C.Prieto, D.Cáceres, I.Vergara, A.G.Every, H.E.Fischer: Phys. Stat. Sol. (a)188 (2001) 1023. 10.1002/1521-396X(200112)188:3<1023::AID-PSSA1023>3.0.CO;2-ASuche in Google Scholar
[19] D.B.Aubertine, N.Ozguven, P.C.McIntyre, S.Brennan: J. Appl. Phys.94 (2005) 1557. 10.1063/1.1589600Suche in Google Scholar
[20] E.E.Fullerton, Y.K.Schuller, H.Vanderstraeten, Y.Bruynseraede: Phys. Rev. B45 (1992) 9292. 10.1103/PhysRevB.45.9292Suche in Google Scholar
[21] S.M.Lee, D.G.Cahill, R.Venkatasubramanian: Appl. Phys. Lett.70 (1997) 2957. 10.1063/1.118607Suche in Google Scholar
[22] M.J.Wu, H.C.Wen, S.C.Wu, P.F.Yang, Y.S.Lai, W.K.Hsu, W.F.Wu, C.P.Chou: Appl. Surf. Sci.257 (2011) 8887. 10.1016/j.apsusc.2010.08.101Suche in Google Scholar
[23] W.H.Yau, P.C.Tseng, D.Lian: Nucl. Instrum. Methods, B269 (2011) 1450. 10.1016/j.nimb.2011.03.009Suche in Google Scholar
[24] R.O.Pilzt, J.R.Maclean, S.J.Clark, G.J.Ackland, P.D.Hatton, J.Crain: Phys. Rev. B: Condens. Matter52 (1995) 4072. 10.1103/PhysRevB.52.4072Suche in Google Scholar PubMed
[25] A.P.Gerk, D.Tabor: Nature271 (1978) 732. 10.1038/271732a0Suche in Google Scholar
[26] W.C.Oliver, G.M.Pharr: J. Mater. Res.19 (2004) 3. 10.1557/jmr.2004.19.1.3Suche in Google Scholar
[27] Yu.I.Golovin: Phys. Solid State50 (2008) 2205. 10.1134/S106378340801006XSuche in Google Scholar
© 2014, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Experimental determination of a representative texture and insight into the range of significant neighboring grain interactions via orientation and misorientation statistics
- Methods of segregation analysis applied to simulated multicomponent multiphase microstructures
- Nanoindentation responses of Si–Ge multilayers
- Microstructural and thermodynamic investigations on friction stir welded Mg/Al-joints
- Ingot metallurgy and microstructural characterization of Ti–Ta alloys
- Microstructural evolution of aluminium–copper alloys during the downward directional solidification process
- Indium ion cementation onto aluminum plates in hydrochloric acid solutions: a kinetic perspective
- Development of Sn–Cu–Sb alloys for making lead- and bismuth-free pewter
- The effect of Sn addition and sulfide ion concentration on the corrosion behavior of Cu-35Zn in NaCl solution
- Synthesis and characteristics of precipitation hardened Cu–Cr alloy and multiply hardened Cu–Cr–Al2O3 nanocomposite obtained using powder metallurgy techniques
- Effect of rhenium addition on the strengthening of chromium–alumina composite materials
- Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)
- Short Communications
- Properties of aluminium coatings produced using manual and robotized flame spraying processes
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Experimental determination of a representative texture and insight into the range of significant neighboring grain interactions via orientation and misorientation statistics
- Methods of segregation analysis applied to simulated multicomponent multiphase microstructures
- Nanoindentation responses of Si–Ge multilayers
- Microstructural and thermodynamic investigations on friction stir welded Mg/Al-joints
- Ingot metallurgy and microstructural characterization of Ti–Ta alloys
- Microstructural evolution of aluminium–copper alloys during the downward directional solidification process
- Indium ion cementation onto aluminum plates in hydrochloric acid solutions: a kinetic perspective
- Development of Sn–Cu–Sb alloys for making lead- and bismuth-free pewter
- The effect of Sn addition and sulfide ion concentration on the corrosion behavior of Cu-35Zn in NaCl solution
- Synthesis and characteristics of precipitation hardened Cu–Cr alloy and multiply hardened Cu–Cr–Al2O3 nanocomposite obtained using powder metallurgy techniques
- Effect of rhenium addition on the strengthening of chromium–alumina composite materials
- Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)
- Short Communications
- Properties of aluminium coatings produced using manual and robotized flame spraying processes
- DGM News
- DGM News