Nanoindentation responses of Si–Ge multilayers
-
Derming Lian
Abstract
In this study, we employed the nanoindentation technique to evaluate the pop-in events of Si–Ge multilayers under extra-low forces. X-ray diffraction revealed a shift of the peaks of the Ge atoms from 68.70 to 68.50°, due to gradual mixing of previously isolated Si and Ge atoms into an SiGe compound, upon increasing the annealing temperature. Atomic force microscopy images of the vicinity near the triangular indentation mark revealed that the primarily plastic deformation, the pop-in event observed in the load–displacement curve, was based on slightly active dislocation nucleation and propagation during treatment with the artificial indenter. The samples annealed at RT, 400, 500, and 600°C exhibited hardnesses (H) of 18.6 ± 1.2, 17.9 ± 1.1, 18.9 ± 1.2, and 15.0 ± 0.8 GPa, respectively, and elastic moduli (E) of 220.0 ± 5.2, 224.9 ± 5.4, 220.7 ± 4.5, and 186.7 ± 3.8 GPa, respectively. These values reveal that elastic/plastic contact translation of the Si–Ge multilayer occurred to various extents depending upon the annealing conditions; in addition, the values of hf/hmax for the samples annealed at RT, 400, 500, and 600°C were 0.449, 0.416, 0.412, and 0.470, respectively. In a crystal structure, release of the indentation load reflects the directly compressed volume; the total penetration depth into the film was approximately 30 nm with a peak load of 500 μN. Accordingly, the annealed samples can exhibit pop-in after indentation earlier than samples treated merely at RT.
References
[1] S.S.Iyer, F.K.LeGoues: J. Appl. Phys.65 (1989) 4693. 10.1063/1.343245Search in Google Scholar
[2] J.M.Baribeau: Appl. Phys. Lett.57 (1990) 1052. 10.1063/1.103377Search in Google Scholar
[3] P.Dobrosz, S.J.Bull, S.H.Olsen, A.G.O'Neill: Z. Metallkd.95 (2004) 340.10.3139/146.017959Search in Google Scholar
[4] F.Heinrichsdorff, M.H.Mao, N.Kirstaedter, A.Krost, D.Bimberg, A.O.Kosogov, P.Werne: Appl. Phys. Lett.71 (1997) 22. 10.1063/1.120556Search in Google Scholar
[5] A.Erko, N.V.Abrosimov, V.Alex: Cryst. Res. Technol.37 (2002) 685. 10.1002/1521-4079(200207)37:7<685::AID-CRAT685>3.0.CO;2-ZSearch in Google Scholar
[6] F.Y.Huang, X.Zhu, M.O.Tanner, K.L.Wang: Appl. Phys. Lett.67 (1995) 566. 10.1063/1.114309Search in Google Scholar
[7] B.Schuppert, J.Schmidtchen, A.Splett, U.Fisher, T.Zinke, R.Moosburger, K.Petermann: Lightwave Technol.14 (1996) 2311. 10.1109/50.541223Search in Google Scholar
[8] N.Armour, S.Dost: Cryst. Res. Technol.45 (2010) 244. 10.1002/crat.200900639Search in Google Scholar
[9] B.C.He, C.H.Cheng, H.C.Wen, Y.S.Lai, P.F.Yang, M.H.Lin, W.F.Wu, C.P.Chou: Microelectron. Reliab.50 (2010) 63. 10.1016/j.microrel.2009.08.005Search in Google Scholar
[10] B.C.He, H.C.Wen, T.Y.Chiang, Z.C.Chang, D.Lian, W.F.Wu, C.P.Chou: Appl. Surf. Sci.256 (2010) 3299. 10.1016/j.apsusc.2009.10.012Search in Google Scholar
[11] B.C.He, H.C.Wen, M.H.Lin, Y.S.Lai, W.F.Wu, C.P.Cho: Microelectron. Reliab.50 (2010) 851. 10.1016/j.microrel.2010.02.013Search in Google Scholar
[12] T.Y.Lin, H.C.Wen, Z.C.Chang, W.K.Hsu, C.P.Chou, C.H.Tsai, D.Lian: J. Phys. Chem. Solids72 (2011) 789. 10.1016/j.jpcs.2010.10.034Search in Google Scholar
[13] J.E.Bradby, J.S.Williams, J.Wong-Leung, M.V.Swain, P.Munroe: Appl. Phys. Lett.80 (2002) 15. 10.1063/1.1436280Search in Google Scholar
[14] Y.R.Jeng, H.C.Wen, P.C.Tsai: Diamond Relat. Mater.18 (2009) 528. 10.1016/j.diamond.2008.09.019Search in Google Scholar
[15] Y.M.Chang, H.C.Wen, C.S.Yang, D.Lian, C.H.Tsai, J.S.Wang, W.F.Wu, C.P.Chou: Microelectron. Reliab.50 (2010) 1111. 10.1016/j.microrel.2010.05.003Search in Google Scholar
[16] D.Lian, H.C.Wen: Int. J. Mater. Res. in press.Search in Google Scholar
[17] C.Prieto, A.de Bernabé, R.Castañer, A.Muñoz-Martín, R.J.Jiménez-Rioboó, M.García-Heráandez, A.de Andrés: J. Phys.: Condens. Matter12 (2000) 2931. 10.1088/0953–8984/12/13/305Search in Google Scholar
[18] A.de Bernabé, C.Prieto, D.Cáceres, I.Vergara, A.G.Every, H.E.Fischer: Phys. Stat. Sol. (a)188 (2001) 1023. 10.1002/1521-396X(200112)188:3<1023::AID-PSSA1023>3.0.CO;2-ASearch in Google Scholar
[19] D.B.Aubertine, N.Ozguven, P.C.McIntyre, S.Brennan: J. Appl. Phys.94 (2005) 1557. 10.1063/1.1589600Search in Google Scholar
[20] E.E.Fullerton, Y.K.Schuller, H.Vanderstraeten, Y.Bruynseraede: Phys. Rev. B45 (1992) 9292. 10.1103/PhysRevB.45.9292Search in Google Scholar
[21] S.M.Lee, D.G.Cahill, R.Venkatasubramanian: Appl. Phys. Lett.70 (1997) 2957. 10.1063/1.118607Search in Google Scholar
[22] M.J.Wu, H.C.Wen, S.C.Wu, P.F.Yang, Y.S.Lai, W.K.Hsu, W.F.Wu, C.P.Chou: Appl. Surf. Sci.257 (2011) 8887. 10.1016/j.apsusc.2010.08.101Search in Google Scholar
[23] W.H.Yau, P.C.Tseng, D.Lian: Nucl. Instrum. Methods, B269 (2011) 1450. 10.1016/j.nimb.2011.03.009Search in Google Scholar
[24] R.O.Pilzt, J.R.Maclean, S.J.Clark, G.J.Ackland, P.D.Hatton, J.Crain: Phys. Rev. B: Condens. Matter52 (1995) 4072. 10.1103/PhysRevB.52.4072Search in Google Scholar PubMed
[25] A.P.Gerk, D.Tabor: Nature271 (1978) 732. 10.1038/271732a0Search in Google Scholar
[26] W.C.Oliver, G.M.Pharr: J. Mater. Res.19 (2004) 3. 10.1557/jmr.2004.19.1.3Search in Google Scholar
[27] Yu.I.Golovin: Phys. Solid State50 (2008) 2205. 10.1134/S106378340801006XSearch in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Experimental determination of a representative texture and insight into the range of significant neighboring grain interactions via orientation and misorientation statistics
- Methods of segregation analysis applied to simulated multicomponent multiphase microstructures
- Nanoindentation responses of Si–Ge multilayers
- Microstructural and thermodynamic investigations on friction stir welded Mg/Al-joints
- Ingot metallurgy and microstructural characterization of Ti–Ta alloys
- Microstructural evolution of aluminium–copper alloys during the downward directional solidification process
- Indium ion cementation onto aluminum plates in hydrochloric acid solutions: a kinetic perspective
- Development of Sn–Cu–Sb alloys for making lead- and bismuth-free pewter
- The effect of Sn addition and sulfide ion concentration on the corrosion behavior of Cu-35Zn in NaCl solution
- Synthesis and characteristics of precipitation hardened Cu–Cr alloy and multiply hardened Cu–Cr–Al2O3 nanocomposite obtained using powder metallurgy techniques
- Effect of rhenium addition on the strengthening of chromium–alumina composite materials
- Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)
- Short Communications
- Properties of aluminium coatings produced using manual and robotized flame spraying processes
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Experimental determination of a representative texture and insight into the range of significant neighboring grain interactions via orientation and misorientation statistics
- Methods of segregation analysis applied to simulated multicomponent multiphase microstructures
- Nanoindentation responses of Si–Ge multilayers
- Microstructural and thermodynamic investigations on friction stir welded Mg/Al-joints
- Ingot metallurgy and microstructural characterization of Ti–Ta alloys
- Microstructural evolution of aluminium–copper alloys during the downward directional solidification process
- Indium ion cementation onto aluminum plates in hydrochloric acid solutions: a kinetic perspective
- Development of Sn–Cu–Sb alloys for making lead- and bismuth-free pewter
- The effect of Sn addition and sulfide ion concentration on the corrosion behavior of Cu-35Zn in NaCl solution
- Synthesis and characteristics of precipitation hardened Cu–Cr alloy and multiply hardened Cu–Cr–Al2O3 nanocomposite obtained using powder metallurgy techniques
- Effect of rhenium addition on the strengthening of chromium–alumina composite materials
- Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)
- Short Communications
- Properties of aluminium coatings produced using manual and robotized flame spraying processes
- DGM News
- DGM News