Microstructural evolution of aluminium–copper alloys during the downward directional solidification process
-
Fu Wang
Abstract
The microstructural evolution of Al–Cu alloys during the downward directional solidification process was investigated. At the planar-to-cellular transformation point, the planar liquid/solid (L/S) interface broke down at the centre. This was contrasted with the behaviour in the liquid metal cooling process, where the interface broke down at the periphery. The critical withdrawal rate at this point was higher than the theoretical value. In addition to this, the variation in the primary dendrite arm spacing (λ1) as a function of the withdrawal rate (V) at constant GL for the Al-2.0 wt.% Cu alloy agreed with the conventional processes. The comparison of λ1 in our experiment to the calculated value λ1 using the Kurz–Fisher, Ma and Trivedi models showed that λ1, calculated by these models, overvalued our experimental results. However, the λ1 calculated from the Hunt model agreed well with the experimental values of λ1. When we reduced the diameter of the sample from 13 mm to 9 mm and maintained the other parameters constant, the L/S interface retained a planar shape. This indicated that the L/S interface was more stable in the smaller sample than that in the larger. This result contrasted with the result in the liquid metal cooling process.
References
[1] B.B.Seth, in: T.M.Pollock, R.D.Kissinger, R.R.Bowman, K.A.Green, M.McLean, S.Olson, J.J.Schirra (Eds.), Superalloys 2000, TMS (2000) 3.Suche in Google Scholar
[2] M.J.Goulette, in: R.D.Kissinger, D.J.Deye, D.L.Anton, A.D.Cetel, M.V.Nathal, T.M.Pollock, D.A.Woodford (Eds.), Superalloys 1996, TMS (1996) 3.Suche in Google Scholar
[3] H.Z.Fu: J. Aeronaut. Mater.18 (1998) 52–61.Suche in Google Scholar
[4] M.L.Clemens, A.R.Price, R.S.Bellows, in: G.Fuchs, A.James, T.Gabb, M.McLean, H.Harada (Eds.), Advanced materials and processes for gas turbines, TMS (2003) 111.Suche in Google Scholar
[5] C.L.Brundidge, J.D.Miller, T.M.Pollock: Metall. Mater. Trans. A42 (2011) 2723. 10.1007/s11661-011-0664-5Suche in Google Scholar
[6] P.W.Bridgman: U.S. Patent 1793672, (1926).Suche in Google Scholar
[7] M.Gell, C.P.Sullivan, F.L.VerSnyder, in: J.J.Burke, M.C.Flemings, A.E.Gorum (Eds.), Solidification Technology, Vol. 1, Brook Hill, Chestnut Hill, MA (1974) 141.Suche in Google Scholar
[8] R.W.Smashey: U.S. Patent 3897815, (1975).Suche in Google Scholar
[9] M.Konter, E.Kats, N.Hofmann, in: T.M.Pollock, R.D.Kissinger, R.R.Bowman, K.A.Green, M.McLean, S.Olson, J.J.Schirra (Eds.), Superalloys 2000, TMS (2000) 189.Suche in Google Scholar
[10] L.Liu, T.W.Huang, M.Qu, G.Liu, J.Zhang, H.Z.Fu: J. Mater. Process. Technol.210 (2010) 159. 10.1016/j.jmatprotec.2009.07.022Suche in Google Scholar
[11] D.Ma, H.Lu, A.Bürig-Polaczek: IOP Conf. Series: Mater. Sci. Eng.27 (2011) 012036. 10.1088/1757-899X/27/1/012036Suche in Google Scholar
[12] M.Konter, M.Thumann: J. Mater. Process. Technol.17 (2001) 386. 10.1016/S0924-0136(01)00785-3Suche in Google Scholar
[13] F.Yilmaz, R.Elliott: J. Mater. Sci.24 (1989) 2065. 10.1007/BF02385422Suche in Google Scholar
[14] D.G.McCartney, J.D.Hunt: Acta Metall.29 (1981) 1851. 10.1016/0001-6160(81)90111-5Suche in Google Scholar
[15] C.M.Klaren, J.D.Verhoeven, R.Trivedi: Metall. Trans. A11 (1980) 1853. 10.1007/BF02655101Suche in Google Scholar
[16] J.Chen, P.K.Sung, S.N.Tewari, D.R.Poirier, H.C.de GrohIII: Mater. Sci. Eng. A357 (2003) 397. 10.1016/S0921-5093(03)00223-5Suche in Google Scholar
[17] R.Trivedi, S.Liu, P.Mazumder, E.Simsek: Sci. Technol. Adv. Mater.2 (2001) 309. 10.1016/S1468-6996(01)00062-6Suche in Google Scholar
[18] W.W.Mullins, R.F.Sekerka: J. Appl. Phys.35 (1964) 444. 10.1063/1.1713333Suche in Google Scholar
[19] G.Y.An, L.X.Liu, G.D.Gu: J. Cryst. Growth83 (1987) 96. 10.1016/0022-0248(87)90508-2Suche in Google Scholar
[20] J.B.Edwards, E.E.Hucke, J.J.Martin: Metall. Rev.13 (1968) 1. 10.1179/095066068790421638Suche in Google Scholar
[21] J.J.Favier: J. Cryst. Growth99 (1990) 18. 10.1016/0022-0248(90)90479-5Suche in Google Scholar
[22] W.Kurz, D.J.Fisher: Acta Metall.29 (1981) 11. 10.1016/0001-6160(81)90082-1Suche in Google Scholar
[23] S.N.Tewari, V.Laxmanan: Metall. Trans. A18 (1987) 167. 10.1007/BF02646238Suche in Google Scholar
[24] R.T.Delves: J. Cryst. Growth8 (1971) 13. 10.1016/0022-0248(71)90016-9Suche in Google Scholar
[25] T.Huang, S.Liu, Y.Yang, D.Lu, Y.Zhou: J. Cryst. Growth128 (1993) 167. 10.1016/0022-0248(93)90313-LSuche in Google Scholar
[26] M.Gündüz, E.Cadirli: Mater. Sci. Eng. A327 (2002) 167. 10.1016/S0921-5093(01)01649-5Suche in Google Scholar
[27] J.D.Hunt: International Conference on solidification and casting of metals, The Metals Society, London (1979).Suche in Google Scholar
[28] R.Trivedi: Metall. Trans. A15 (1984) 977. 10.1007/BF02644689Suche in Google Scholar
[29] D.X.Ma, P.R.Sahm: Metall. Mater. Trans. A29 (1998) 1113. 10.1007/s11661-998-0303-ySuche in Google Scholar
[30] G.Y.An, L.XLiu: J. Cryst. Growth80 (1987) 383. 10.1016/0022-0248(87)90085-6Suche in Google Scholar
[31] D.X.Ma: Entwicklung der Erstarrungsfront und Entstehung des Mikrogefüges bei gerichteter Erstarrung metallischer Schmelze, Shaker Verlag, Aachen (2000).Suche in Google Scholar
© 2014, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Experimental determination of a representative texture and insight into the range of significant neighboring grain interactions via orientation and misorientation statistics
- Methods of segregation analysis applied to simulated multicomponent multiphase microstructures
- Nanoindentation responses of Si–Ge multilayers
- Microstructural and thermodynamic investigations on friction stir welded Mg/Al-joints
- Ingot metallurgy and microstructural characterization of Ti–Ta alloys
- Microstructural evolution of aluminium–copper alloys during the downward directional solidification process
- Indium ion cementation onto aluminum plates in hydrochloric acid solutions: a kinetic perspective
- Development of Sn–Cu–Sb alloys for making lead- and bismuth-free pewter
- The effect of Sn addition and sulfide ion concentration on the corrosion behavior of Cu-35Zn in NaCl solution
- Synthesis and characteristics of precipitation hardened Cu–Cr alloy and multiply hardened Cu–Cr–Al2O3 nanocomposite obtained using powder metallurgy techniques
- Effect of rhenium addition on the strengthening of chromium–alumina composite materials
- Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)
- Short Communications
- Properties of aluminium coatings produced using manual and robotized flame spraying processes
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Experimental determination of a representative texture and insight into the range of significant neighboring grain interactions via orientation and misorientation statistics
- Methods of segregation analysis applied to simulated multicomponent multiphase microstructures
- Nanoindentation responses of Si–Ge multilayers
- Microstructural and thermodynamic investigations on friction stir welded Mg/Al-joints
- Ingot metallurgy and microstructural characterization of Ti–Ta alloys
- Microstructural evolution of aluminium–copper alloys during the downward directional solidification process
- Indium ion cementation onto aluminum plates in hydrochloric acid solutions: a kinetic perspective
- Development of Sn–Cu–Sb alloys for making lead- and bismuth-free pewter
- The effect of Sn addition and sulfide ion concentration on the corrosion behavior of Cu-35Zn in NaCl solution
- Synthesis and characteristics of precipitation hardened Cu–Cr alloy and multiply hardened Cu–Cr–Al2O3 nanocomposite obtained using powder metallurgy techniques
- Effect of rhenium addition on the strengthening of chromium–alumina composite materials
- Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)
- Short Communications
- Properties of aluminium coatings produced using manual and robotized flame spraying processes
- DGM News
- DGM News