Startseite Microstructural evolution of aluminium–copper alloys during the downward directional solidification process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructural evolution of aluminium–copper alloys during the downward directional solidification process

  • Fu Wang , Dexin Ma , Jun Zhang , Lin Liu , Jianping Hong , Samuel Bogner und Andreas Bührig-Polaczek
Veröffentlicht/Copyright: 7. Februar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The microstructural evolution of Al–Cu alloys during the downward directional solidification process was investigated. At the planar-to-cellular transformation point, the planar liquid/solid (L/S) interface broke down at the centre. This was contrasted with the behaviour in the liquid metal cooling process, where the interface broke down at the periphery. The critical withdrawal rate at this point was higher than the theoretical value. In addition to this, the variation in the primary dendrite arm spacing (λ1) as a function of the withdrawal rate (V) at constant GL for the Al-2.0 wt.% Cu alloy agreed with the conventional processes. The comparison of λ1 in our experiment to the calculated value λ1 using the Kurz–Fisher, Ma and Trivedi models showed that λ1, calculated by these models, overvalued our experimental results. However, the λ1 calculated from the Hunt model agreed well with the experimental values of λ1. When we reduced the diameter of the sample from 13 mm to 9 mm and maintained the other parameters constant, the L/S interface retained a planar shape. This indicated that the L/S interface was more stable in the smaller sample than that in the larger. This result contrasted with the result in the liquid metal cooling process.


* Correspondence address, PD Dr. Dexin Ma, Giesserei-Intitute, RWTH Aachen, Intzestr. 5, D-52072 Aachen, Germany, Tel.: +492418095883, Fax: +492418092276, E-mail:

References

[1] B.B.Seth, in: T.M.Pollock, R.D.Kissinger, R.R.Bowman, K.A.Green, M.McLean, S.Olson, J.J.Schirra (Eds.), Superalloys 2000, TMS (2000) 3.Suche in Google Scholar

[2] M.J.Goulette, in: R.D.Kissinger, D.J.Deye, D.L.Anton, A.D.Cetel, M.V.Nathal, T.M.Pollock, D.A.Woodford (Eds.), Superalloys 1996, TMS (1996) 3.Suche in Google Scholar

[3] H.Z.Fu: J. Aeronaut. Mater.18 (1998) 5261.Suche in Google Scholar

[4] M.L.Clemens, A.R.Price, R.S.Bellows, in: G.Fuchs, A.James, T.Gabb, M.McLean, H.Harada (Eds.), Advanced materials and processes for gas turbines, TMS (2003) 111.Suche in Google Scholar

[5] C.L.Brundidge, J.D.Miller, T.M.Pollock: Metall. Mater. Trans. A42 (2011) 2723. 10.1007/s11661-011-0664-5Suche in Google Scholar

[6] P.W.Bridgman: U.S. Patent 1793672, (1926).Suche in Google Scholar

[7] M.Gell, C.P.Sullivan, F.L.VerSnyder, in: J.J.Burke, M.C.Flemings, A.E.Gorum (Eds.), Solidification Technology, Vol. 1, Brook Hill, Chestnut Hill, MA (1974) 141.Suche in Google Scholar

[8] R.W.Smashey: U.S. Patent 3897815, (1975).Suche in Google Scholar

[9] M.Konter, E.Kats, N.Hofmann, in: T.M.Pollock, R.D.Kissinger, R.R.Bowman, K.A.Green, M.McLean, S.Olson, J.J.Schirra (Eds.), Superalloys 2000, TMS (2000) 189.Suche in Google Scholar

[10] L.Liu, T.W.Huang, M.Qu, G.Liu, J.Zhang, H.Z.Fu: J. Mater. Process. Technol.210 (2010) 159. 10.1016/j.jmatprotec.2009.07.022Suche in Google Scholar

[11] D.Ma, H.Lu, A.Bürig-Polaczek: IOP Conf. Series: Mater. Sci. Eng.27 (2011) 012036. 10.1088/1757-899X/27/1/012036Suche in Google Scholar

[12] M.Konter, M.Thumann: J. Mater. Process. Technol.17 (2001) 386. 10.1016/S0924-0136(01)00785-3Suche in Google Scholar

[13] F.Yilmaz, R.Elliott: J. Mater. Sci.24 (1989) 2065. 10.1007/BF02385422Suche in Google Scholar

[14] D.G.McCartney, J.D.Hunt: Acta Metall.29 (1981) 1851. 10.1016/0001-6160(81)90111-5Suche in Google Scholar

[15] C.M.Klaren, J.D.Verhoeven, R.Trivedi: Metall. Trans. A11 (1980) 1853. 10.1007/BF02655101Suche in Google Scholar

[16] J.Chen, P.K.Sung, S.N.Tewari, D.R.Poirier, H.C.de GrohIII: Mater. Sci. Eng. A357 (2003) 397. 10.1016/S0921-5093(03)00223-5Suche in Google Scholar

[17] R.Trivedi, S.Liu, P.Mazumder, E.Simsek: Sci. Technol. Adv. Mater.2 (2001) 309. 10.1016/S1468-6996(01)00062-6Suche in Google Scholar

[18] W.W.Mullins, R.F.Sekerka: J. Appl. Phys.35 (1964) 444. 10.1063/1.1713333Suche in Google Scholar

[19] G.Y.An, L.X.Liu, G.D.Gu: J. Cryst. Growth83 (1987) 96. 10.1016/0022-0248(87)90508-2Suche in Google Scholar

[20] J.B.Edwards, E.E.Hucke, J.J.Martin: Metall. Rev.13 (1968) 1. 10.1179/095066068790421638Suche in Google Scholar

[21] J.J.Favier: J. Cryst. Growth99 (1990) 18. 10.1016/0022-0248(90)90479-5Suche in Google Scholar

[22] W.Kurz, D.J.Fisher: Acta Metall.29 (1981) 11. 10.1016/0001-6160(81)90082-1Suche in Google Scholar

[23] S.N.Tewari, V.Laxmanan: Metall. Trans. A18 (1987) 167. 10.1007/BF02646238Suche in Google Scholar

[24] R.T.Delves: J. Cryst. Growth8 (1971) 13. 10.1016/0022-0248(71)90016-9Suche in Google Scholar

[25] T.Huang, S.Liu, Y.Yang, D.Lu, Y.Zhou: J. Cryst. Growth128 (1993) 167. 10.1016/0022-0248(93)90313-LSuche in Google Scholar

[26] M.Gündüz, E.Cadirli: Mater. Sci. Eng. A327 (2002) 167. 10.1016/S0921-5093(01)01649-5Suche in Google Scholar

[27] J.D.Hunt: International Conference on solidification and casting of metals, The Metals Society, London (1979).Suche in Google Scholar

[28] R.Trivedi: Metall. Trans. A15 (1984) 977. 10.1007/BF02644689Suche in Google Scholar

[29] D.X.Ma, P.R.Sahm: Metall. Mater. Trans. A29 (1998) 1113. 10.1007/s11661-998-0303-ySuche in Google Scholar

[30] G.Y.An, L.XLiu: J. Cryst. Growth80 (1987) 383. 10.1016/0022-0248(87)90085-6Suche in Google Scholar

[31] D.X.Ma: Entwicklung der Erstarrungsfront und Entstehung des Mikrogefüges bei gerichteter Erstarrung metallischer Schmelze, Shaker Verlag, Aachen (2000).Suche in Google Scholar

Received: 2013-06-13
Accepted: 2013-08-12
Published Online: 2014-02-07
Published in Print: 2014-02-10

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 18.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111005/html
Button zum nach oben scrollen