Home Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)
Article
Licensed
Unlicensed Requires Authentication

Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)

  • Bulent Aktas , Suleyman Tekeli and Mustafa Kucuktuvek
Published/Copyright: February 7, 2014
Become an author with De Gruyter Brill

Abstract

The effects of the addition of Er2O3 on the grain growth and sinterability of c-ZrO2 were investigated using 8 mol.% yttria-stabilized cubic zirconia (c-ZrO2) and various amounts of Er2O3. For these purposes, the content of 0–15 wt.% Er2O3 and c-ZrO2 powders were doped using a colloidal process. Undoped and Er2O3-doped c-ZrO2 specimens were annealed for grain growth at different temperatures and holding times. An increase in annealing temperature and holding time caused grain growth in all specimens. Activation energy of the undoped c-ZrO2 obtained was 358 kJ mol−1 and the activation energies of 1, 5, 10 and 15 wt.% Er2O3-doped specimens obtained were 388, 403, 432 and 476 kJ mol−1, respectively. While excessive grain coarsening in the undoped c-ZrO2 was observed, a lesser level of grain growth occurred in the Er2O3-doped specimens, due to the segregation of Er2O3 at the grain boundaries and the restriction in the grain boundaries mobility of c-ZrO2.


* Correspondence address, Assist. Prof. Bulent Aktas, Harran University, Osmanbey campus, Engineering Faculty, Department of Mechanical Engineering, 63300 Sanliurfa, Turkey, Tel.: +90414 3183000, Fax: +90414 3183799, E-mail:

References

[1] J.Wang, M.Rainforth, R.Stevens: Br. Ceram. Trans.88 (1989) 1.Search in Google Scholar

[2] J.Eichler, J.Rodel, U.Eisele, M.Hoffman: J. Am. Ceram. Soc.90 (2007) 2830. 10.1111/j.1551-2916.2007.01643.xSearch in Google Scholar

[3] D.Casellas, J.Alcala, L.Llanes, M.Anglada: J. Mater. Sci.36 (2001) 3011. 10.1023/A:1017923008382Search in Google Scholar

[4] M.Trunec: Ceram. Silik.52(3) (2008) 165.Search in Google Scholar

[5] S.Tekeli, T.Boyacioglu, A.Gural: Ceram. Int.34 (2008) 1959. 10.1016/j.ceramint.2007.07.003Search in Google Scholar

[6] S.Tekeli: J. Alloys Compd.391 (2005) 217. 10.1016/j.jallcom.2004.08.084Search in Google Scholar

[7] N.Bamba, Y.H.Choa, T.Sekino, K.Niihara: J. Eur. Ceram. Soc.18 (1998) 693. 10.1016/S0955-2219(97)00192-1Search in Google Scholar

[8] W.C.Maskell: Solid State Ionics134 (2000) 43. 10.1016/S0167-2738(00)00712-8Search in Google Scholar

[9] J.Riegel, H.Neumann, H.M.Wiedenmann: Solid State Ionics152–153 (2002) 783. 10.1016/S0167-2738(02)00329-6Search in Google Scholar

[10] N.Q.Minh: J. Am. Ceram. Soc.76 (1993) 563. 10.1111/j.1151-2916.1993.tb03645.xSearch in Google Scholar

[11] S.P.S.Badwal: Solid State Ionics52 (1992) 23. 10.1016/0167-2738(92)90088-7Search in Google Scholar

[12] T.Zhang, Z.Zeng, H.Huang, P.Hing, J.Kilner: Mater. Lett.57 (2002) 124. 10.1016/S0167-577X(02)00717-6Search in Google Scholar

[13] S.Tekeli, U.Demir: Ceram. Int.31 (2005) 973. 10.1016/j.ceramint.2004.10.011Search in Google Scholar

[14] R.Scheps: Prog. Quantum Electron.20 (1996) 271. 10.1016/0079-6727(95)00007-0Search in Google Scholar

[15] P.Duran: J. Am. Ceram. Soc.60 (1977) 510. 10.1111/j.1151-2916.1977.tb14095.xSearch in Google Scholar

[16] C.Pascual, P.Duran: J. Mater. Sci.16 (1981) 3067. 10.1007/BF00540314Search in Google Scholar

[17] S.Maschio, S.Bruckner, G.Pezzotti: J. Ceram. Soc. Jpn.107 (1999) 1111. 10.2109/jcersj.107.1111Search in Google Scholar

[18] S.Maschio, E.Aneggi, A.Trovarelli, V.Sergo: Ceram. Int.34 (2008) 1327. 10.1016/j.ceramint.2007.03.006Search in Google Scholar

[19] J.R.Jurado, C.Moure, P.Duran: J. Phys.47 (1986) 789. 10.1051/jphys:01986004705078900Search in Google Scholar

[20] S.Tekeli, B.Aktaş, M.Küçüktüvek: High Temp. Mater. Process.31 (2012) 701. 10.1515/htmp-2011-0145Search in Google Scholar

[21] Y.J.Lin, P.Angelini, M.L.Mecartney: J. Am. Ceram. Soc.73 (1990) 2728. 10.1111/j.1151-2916.1990.tb06753.xSearch in Google Scholar

[22] C.D.Sagel-Ransijn, A.J.A.Winnubst, A.J.Burggraaf, H.Verweij: J. Eur. Ceram. Soc.17 (1997) 1133. 10.1016/S0955-2219(96)00217-8Search in Google Scholar

[23] R.J.Brook: In Treatise on Materials Science and Technology, Academic Press, New York, 9 (1976) 331.10.1016/B978-0-12-341809-8.50024-3Search in Google Scholar

[24] H.Schubert, N.Claussen, M.Rühle, in: N.Claussen, M.Rühle, A.H.Heuer (Eds.), Advances in Ceramics, The American Ceramic Society, Columbus, OH, (1984) 766.Search in Google Scholar

[25] A.A.Sharif, P.H.Imamura, T.E.Mitchell, M.L.Mecartney: Acta Mater.46 (1998) 3863. 10.1016/S1359-6454(98)00080-9Search in Google Scholar

[26] L.A.Xue, X.Wu, I.W.Chen: J. Am. Ceram. Soc.74 (1991) 842. 10.1111/j.1151-2916.1991.tb06935.xSearch in Google Scholar

[27] I.W.Chen, L.A.Xue: J. Am. Ceram. Soc.73 (1990) 2585. 10.1111/j.1151-2916.1990.tb06734.xSearch in Google Scholar

[28] A.Sturm, U.Betz, U.Scipione, H.Hahn: Nanostruct. Mater.11 (1999) 651. 10.1016/S0965-9773(99)00353-0Search in Google Scholar

[29] S.J.Dillon, M.P.Harmer: Mater. Sci. Forum558–559 (2007) 1227. 10.4028/www.scientific.net/MSF.558-559.1227Search in Google Scholar

[30] A.A.Sharif, P.H.Imamura, M.L.Mecartney: Mater. Sci. Forum304–306 (1999) 443. 10.4028/www.scientific.net/MSF.304-306.443Search in Google Scholar

Received: 2013-04-02
Accepted: 2013-07-22
Published Online: 2014-02-07
Published in Print: 2014-02-10

© 2014, Carl Hanser Verlag, München

Downloaded on 19.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110999/html
Scroll to top button