Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)
-
Bulent Aktas
Abstract
The effects of the addition of Er2O3 on the grain growth and sinterability of c-ZrO2 were investigated using 8 mol.% yttria-stabilized cubic zirconia (c-ZrO2) and various amounts of Er2O3. For these purposes, the content of 0–15 wt.% Er2O3 and c-ZrO2 powders were doped using a colloidal process. Undoped and Er2O3-doped c-ZrO2 specimens were annealed for grain growth at different temperatures and holding times. An increase in annealing temperature and holding time caused grain growth in all specimens. Activation energy of the undoped c-ZrO2 obtained was 358 kJ mol−1 and the activation energies of 1, 5, 10 and 15 wt.% Er2O3-doped specimens obtained were 388, 403, 432 and 476 kJ mol−1, respectively. While excessive grain coarsening in the undoped c-ZrO2 was observed, a lesser level of grain growth occurred in the Er2O3-doped specimens, due to the segregation of Er2O3 at the grain boundaries and the restriction in the grain boundaries mobility of c-ZrO2.
References
[1] J.Wang, M.Rainforth, R.Stevens: Br. Ceram. Trans.88 (1989) 1.Search in Google Scholar
[2] J.Eichler, J.Rodel, U.Eisele, M.Hoffman: J. Am. Ceram. Soc.90 (2007) 2830. 10.1111/j.1551-2916.2007.01643.xSearch in Google Scholar
[3] D.Casellas, J.Alcala, L.Llanes, M.Anglada: J. Mater. Sci.36 (2001) 3011. 10.1023/A:1017923008382Search in Google Scholar
[4] M.Trunec: Ceram. Silik.52(3) (2008) 165.Search in Google Scholar
[5] S.Tekeli, T.Boyacioglu, A.Gural: Ceram. Int.34 (2008) 1959. 10.1016/j.ceramint.2007.07.003Search in Google Scholar
[6] S.Tekeli: J. Alloys Compd.391 (2005) 217. 10.1016/j.jallcom.2004.08.084Search in Google Scholar
[7] N.Bamba, Y.H.Choa, T.Sekino, K.Niihara: J. Eur. Ceram. Soc.18 (1998) 693. 10.1016/S0955-2219(97)00192-1Search in Google Scholar
[8] W.C.Maskell: Solid State Ionics134 (2000) 43. 10.1016/S0167-2738(00)00712-8Search in Google Scholar
[9] J.Riegel, H.Neumann, H.M.Wiedenmann: Solid State Ionics152–153 (2002) 783. 10.1016/S0167-2738(02)00329-6Search in Google Scholar
[10] N.Q.Minh: J. Am. Ceram. Soc.76 (1993) 563. 10.1111/j.1151-2916.1993.tb03645.xSearch in Google Scholar
[11] S.P.S.Badwal: Solid State Ionics52 (1992) 23. 10.1016/0167-2738(92)90088-7Search in Google Scholar
[12] T.Zhang, Z.Zeng, H.Huang, P.Hing, J.Kilner: Mater. Lett.57 (2002) 124. 10.1016/S0167-577X(02)00717-6Search in Google Scholar
[13] S.Tekeli, U.Demir: Ceram. Int.31 (2005) 973. 10.1016/j.ceramint.2004.10.011Search in Google Scholar
[14] R.Scheps: Prog. Quantum Electron.20 (1996) 271. 10.1016/0079-6727(95)00007-0Search in Google Scholar
[15] P.Duran: J. Am. Ceram. Soc.60 (1977) 510. 10.1111/j.1151-2916.1977.tb14095.xSearch in Google Scholar
[16] C.Pascual, P.Duran: J. Mater. Sci.16 (1981) 3067. 10.1007/BF00540314Search in Google Scholar
[17] S.Maschio, S.Bruckner, G.Pezzotti: J. Ceram. Soc. Jpn.107 (1999) 1111. 10.2109/jcersj.107.1111Search in Google Scholar
[18] S.Maschio, E.Aneggi, A.Trovarelli, V.Sergo: Ceram. Int.34 (2008) 1327. 10.1016/j.ceramint.2007.03.006Search in Google Scholar
[19] J.R.Jurado, C.Moure, P.Duran: J. Phys.47 (1986) 789. 10.1051/jphys:01986004705078900Search in Google Scholar
[20] S.Tekeli, B.Aktaş, M.Küçüktüvek: High Temp. Mater. Process.31 (2012) 701. 10.1515/htmp-2011-0145Search in Google Scholar
[21] Y.J.Lin, P.Angelini, M.L.Mecartney: J. Am. Ceram. Soc.73 (1990) 2728. 10.1111/j.1151-2916.1990.tb06753.xSearch in Google Scholar
[22] C.D.Sagel-Ransijn, A.J.A.Winnubst, A.J.Burggraaf, H.Verweij: J. Eur. Ceram. Soc.17 (1997) 1133. 10.1016/S0955-2219(96)00217-8Search in Google Scholar
[23] R.J.Brook: In Treatise on Materials Science and Technology, Academic Press, New York, 9 (1976) 331.10.1016/B978-0-12-341809-8.50024-3Search in Google Scholar
[24] H.Schubert, N.Claussen, M.Rühle, in: N.Claussen, M.Rühle, A.H.Heuer (Eds.), Advances in Ceramics, The American Ceramic Society, Columbus, OH, (1984) 766.Search in Google Scholar
[25] A.A.Sharif, P.H.Imamura, T.E.Mitchell, M.L.Mecartney: Acta Mater.46 (1998) 3863. 10.1016/S1359-6454(98)00080-9Search in Google Scholar
[26] L.A.Xue, X.Wu, I.W.Chen: J. Am. Ceram. Soc.74 (1991) 842. 10.1111/j.1151-2916.1991.tb06935.xSearch in Google Scholar
[27] I.W.Chen, L.A.Xue: J. Am. Ceram. Soc.73 (1990) 2585. 10.1111/j.1151-2916.1990.tb06734.xSearch in Google Scholar
[28] A.Sturm, U.Betz, U.Scipione, H.Hahn: Nanostruct. Mater.11 (1999) 651. 10.1016/S0965-9773(99)00353-0Search in Google Scholar
[29] S.J.Dillon, M.P.Harmer: Mater. Sci. Forum558–559 (2007) 1227. 10.4028/www.scientific.net/MSF.558-559.1227Search in Google Scholar
[30] A.A.Sharif, P.H.Imamura, M.L.Mecartney: Mater. Sci. Forum304–306 (1999) 443. 10.4028/www.scientific.net/MSF.304-306.443Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Experimental determination of a representative texture and insight into the range of significant neighboring grain interactions via orientation and misorientation statistics
- Methods of segregation analysis applied to simulated multicomponent multiphase microstructures
- Nanoindentation responses of Si–Ge multilayers
- Microstructural and thermodynamic investigations on friction stir welded Mg/Al-joints
- Ingot metallurgy and microstructural characterization of Ti–Ta alloys
- Microstructural evolution of aluminium–copper alloys during the downward directional solidification process
- Indium ion cementation onto aluminum plates in hydrochloric acid solutions: a kinetic perspective
- Development of Sn–Cu–Sb alloys for making lead- and bismuth-free pewter
- The effect of Sn addition and sulfide ion concentration on the corrosion behavior of Cu-35Zn in NaCl solution
- Synthesis and characteristics of precipitation hardened Cu–Cr alloy and multiply hardened Cu–Cr–Al2O3 nanocomposite obtained using powder metallurgy techniques
- Effect of rhenium addition on the strengthening of chromium–alumina composite materials
- Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)
- Short Communications
- Properties of aluminium coatings produced using manual and robotized flame spraying processes
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Experimental determination of a representative texture and insight into the range of significant neighboring grain interactions via orientation and misorientation statistics
- Methods of segregation analysis applied to simulated multicomponent multiphase microstructures
- Nanoindentation responses of Si–Ge multilayers
- Microstructural and thermodynamic investigations on friction stir welded Mg/Al-joints
- Ingot metallurgy and microstructural characterization of Ti–Ta alloys
- Microstructural evolution of aluminium–copper alloys during the downward directional solidification process
- Indium ion cementation onto aluminum plates in hydrochloric acid solutions: a kinetic perspective
- Development of Sn–Cu–Sb alloys for making lead- and bismuth-free pewter
- The effect of Sn addition and sulfide ion concentration on the corrosion behavior of Cu-35Zn in NaCl solution
- Synthesis and characteristics of precipitation hardened Cu–Cr alloy and multiply hardened Cu–Cr–Al2O3 nanocomposite obtained using powder metallurgy techniques
- Effect of rhenium addition on the strengthening of chromium–alumina composite materials
- Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2)
- Short Communications
- Properties of aluminium coatings produced using manual and robotized flame spraying processes
- DGM News
- DGM News