Thermodynamic assessment of the Mn–Ni–O system
-
Lina Kjellqvist
Abstract
Experimental data on thermodynamic properties and phase relations of the ternary Mn–Ni–O system were reviewed, and by use of the CALPHAD method, a consistent set of model parameters was optimised. The solid oxide phases were modelled using the compound energy formalism. The model allows representation of non-stoichiometry and solid solution in the phases. The distribution of cations between different lattice sites in the two spinel phases is also modelled. The liquid phase is described using the ionic two-sublattice model. The same model is used both for the metallic and the oxide liquid. Good agreement between calculated and experimental values is achieved.
References
[1] A.Petric, H.Ling: J. Am. Ceram. Soc.90 (2007) 1515. 10.1111/j.1551-2916.2007.01522.xSuche in Google Scholar
[2] L.Kjellqvist, M.Selleby, B.Sundman: Calphad32 (2008) 577. 10.1016/j.calphad.2008.04.005Suche in Google Scholar
[3] L.Kjellqvist, M.Selleby: Calphad33 (2009) 393. 10.1016/j.calphad.2008.12.002Suche in Google Scholar
[4] L.Kjellqvist, M.Selleby: J. Phase Equilib. Diffus.31 (2010) 113. 10.1007/s11669-009-9643-6Suche in Google Scholar
[5] L.Kjellqvist, M.Selleby: Cr–Mn–O, J. Alloys Compd. (in press). 10.1016/j.jallcom.2010.04.252Suche in Google Scholar
[6] A.Grundy, B.Hallstedt, L.Gauckler: J. Phase Equilib.24 (2003) 21. 10.1007/s11669-003-0004-6Suche in Google Scholar
[7] J.Taylor, A.Dinsdale: Z. Metallkd.81 (1990) 354.Suche in Google Scholar
[8] J.Miettinen: Calphad25 (2001) 43. 10.1016/S0364-5916(01)00029-3Suche in Google Scholar
[9] C.Guo, Z.Du: Intermetallics13 (2005) 525. 10.1016/j.intermet.2004.09.002Suche in Google Scholar
[10] P.Franke: Int. J. Mater. Res.98 (2007) 954. 10.3139/146.101558Suche in Google Scholar
[11] B.Bergman, J.Ågren: J. Am. Ceram. Soc.68 (1985) 444. 10.1111/j.1151-2916.1985.tb10172.xSuche in Google Scholar
[12] S.-A.Cho, C.León-Sucré: J. Am. Ceram. Soc.65 (1982) 307. 10.1111/j.1151-2916.1982.tb10449.xSuche in Google Scholar
[13] M.Hillert, B.Jansson, B.Sundman, J.Ågren: Metall. Trans. A16 (1985) 261. 10.1007/BF02815307Suche in Google Scholar
[14] B.Sundman: Calphad15 (1991) 109. 10.1016/0364-5916(91)90010-HSuche in Google Scholar
[15] M.Hillert: J. Alloys Compd.320 (2001) 161. 10.1016/S0925-8388(00)01481-XSuche in Google Scholar
[16] N.Saunders, A.Miodownik: Calphad (Calculation of Phase Diagrams): A Comprehensive Guide, Pergamon, Oxford (1998).Suche in Google Scholar
[17] H.Lukas, S.Fries, B.Sundman: Computational Thermodynamics, The Calphad Method, Cambridge University Press, Cambridge (2007).10.1017/CBO9780511804137Suche in Google Scholar
[18] H.Jahn, E.Teller: Proc. R. Soc. London A161 (1937) 220.Suche in Google Scholar
[19] M.Hillert, L.Kjellqvist, H.Mao, M.Selleby, B.Sundman: Calphad33 (2009) 227. 10.1016/j.calphad.2008.05.006Suche in Google Scholar
[20] S.Dorris, T.Mason: J. Am. Ceram. Soc.71 (1988) 379. 10.1111/j.1151-2916.1988.tb05057.xSuche in Google Scholar
[21] F.Driessens: Inorg. Chim. Acta.1 (1967) 193. 10.1016/S0020-1693(00)93169-4Suche in Google Scholar
[22] D.McClure: J. Phys. Chem. Solids3 (1957) 311. 10.1016/0022-3697(57)90034-3Suche in Google Scholar
[23] J.Dunitz, L.Orgel: J. Phys. Chem. Solids3 (1957) 318. 10.1016/0022-3697(57)90035-5Suche in Google Scholar
[24] K.Irani, A.Sinha, A.Biswas: J. Phys. Chem. Solids17 (1960) 101. 10.1016/0022-3697(60)90181-5Suche in Google Scholar
[25] G.Inden: Z. Metallkd.66 (1975) 577.10.1515/ijmr-1975-661003Suche in Google Scholar
[26] M.Hillert, M.Jarl: Calphad2 (1978) 227. 10.1016/0364-5916(78)90011-1Suche in Google Scholar
[27] D.Mehandjiev, E.Zhecheva, G.Ivanov, R.Ioncheva: Applied Catalysis A167 (1998) 277. 10.1016/S0926-860X(97)00312-8Suche in Google Scholar
[28] A.Sinha, N.Sanjana, A.Biswas: Acta Cryst.10 (1957) 439. 10.1107/S0365110X57001450Suche in Google Scholar
[29] L.Azaroff: Z. Krist.112 (1959) 33.10.2307/40097956Suche in Google Scholar
[30] A.Meenakshisundaram, N.Gunasekaram, V.Srinivasan: Phys. Stat. Sol. A68 (1982) 15.Suche in Google Scholar
[31] J.Töpfer, A.Feltz, D.Gräf, B.Hackl, L.Raupach, P.Weissbrodt: Phys. Stat. Sol. A134 (1992) 405.Suche in Google Scholar
[32] B.Boucher, R.Buhl, M.Perrin: Acta Cryst. B25 (1969) 2326.Suche in Google Scholar
[33] E.Larson, R.Arnott, D.Wickham: J. Phys. Chem. Solids.23 (1962) 1771. 10.1016/0022-3697(62)90216-0Suche in Google Scholar
[34] E.Macklen: J. Phys. Chem. Solids47 (1986) 1073. 10.1016/0022-3697(86)90074-0Suche in Google Scholar
[35] B.Gillot, J.Baudour, F.Bouree, R.Metz, R.Legros, A.Rousset: Solid State Ionics58 (1992) 155. 10.1016/0167-2738(92)90022-HSuche in Google Scholar
[36] V.Brabers, F.Van Setten, P.Knapen: J. Solid State Chem.49 (1983) 93. 10.1016/0022-4596(83)90220-7Suche in Google Scholar
[37] M.Islam, C.Catlow: J. Phys. Chem. Solids49 (1988) 119. 10.1016/0022-3697(88)90040-6Suche in Google Scholar
[38] J.Kulkarni, V.Darshane: Thermochimica Acta93 (1985) 473. 10.1016/0040-6031(85)85119-4Suche in Google Scholar
[39] G.Bhandage, H.Keer: J. Phys. C7 (1974) 142.Suche in Google Scholar
[40] J.Baudour, F.Bouree, M.Fremy, R.Legros, A.Rousset, B.Gillot: Physica B181 (1992) 97.Suche in Google Scholar
[41] Y.Shen, T.Nakayama, M.Arai, O.Yanagisawa, M.Izumi: J. Phys. Chem. Solids63 (2002) 947. 10.1016/S0022-3697(02)00017-3Suche in Google Scholar
[42] S.Åsbrink, A.Waskowska, M.Drozd, E.Talik: J. Phys. Chem. Solids58 (1998) 725. 10.1016/S0022-3697(96)00198-9Suche in Google Scholar
[43] B.Boucher, R.Buhl, M.Perrin: J. Phys. Chem. Solids31 (1970) 363. 10.1016/0022-3697(70)90117-4Suche in Google Scholar
[44] S.Åsbrink, A.Waskowska, J.Staun Olsen, L.Gerward: Phys. Rev. B57 (1998) 4972.Suche in Google Scholar
[45] A.Navrotsky, O.Kleppa: J. Inorg. Nucl. Chem.30 (1968) 479.Suche in Google Scholar
[46] D.Wickham: J. Inorg. Nucl. Chem.26 (1964) 1369.10.1016/0022-1902(64)80116-0Suche in Google Scholar
[47] X.-X.Tang, A.Manthiram, J.Goodenough: J. Less-Common Met.156 (1989) 357.Suche in Google Scholar
[48] J.Jung, J.Töpfer, A.Feltz: J. Thermal Anal.36 (1990) 1505.Suche in Google Scholar
[49] V.Balakirev, V.Barkhatov, A.Bobov, Y.V.Golikov, A.Zalazinsky, G.Chufarov: Metallurgy of Manganese, Nauka, Moscow, (1980).Suche in Google Scholar
[50] G.Popov, S.Strokatova: Chemistry and chemical technology (1971) 414.Suche in Google Scholar
[51] Y.Golikov, V.Balakirev: J. Phys. Chem. Solids49 (1988) 329. 10.1016/0022-3697(88)90087-XSuche in Google Scholar
[52] D.Cameron, A.Unger: Metall. Trans.1 (1970) 2615. 10.1007/BF03038393Suche in Google Scholar
[53] H.Paulsson, E.Rosén: Chem. Scr.11 (1977) 204.Suche in Google Scholar
[54] S.Seetharaman, K.Abraham: Trans. Inst. Min. Metall. C77 (1968) 209.Suche in Google Scholar
[55] W.Hahn, A.Muan: J. Phys. Chem. Solids19 (1961) 338. 10.1016/0022-3697(61)90044-0Suche in Google Scholar
[56] C.Catlow, B.Fender, P.Hampson: J. Chem. Soc., Faraday Trans.73 (1977) 911.10.1039/f29777300911Suche in Google Scholar
[57] S.Labus, G.Rog: Ann. Soc. Chim. Poly.49 (1975) 339.Suche in Google Scholar
[58] J.-O.Andersson, T.Helander, L.Höglund, P.Shi, B.Sundman: Calphad26 (2002) 273. 10.1016/S0364-5916(02)00037-8Suche in Google Scholar
[59] A.Dinsdale: Calphad15 (1991) 317. 10.1016/0364-5916(91)90030-NSuche in Google Scholar
[60] B.Bastow, I.Palmer, D.Whittle, G.Wood: Oxidation of Metals18 (1982) 295. 10.1007/BF00656573Suche in Google Scholar
[61] H.Mao, M.Hillert, M.Selleby, B.Sundman: J. Am. Ceram. Soc.89 (2006) 298. 10.1111/j.1551-2916.2005.00698.xSuche in Google Scholar
[62] H.Mao, O.Fabrichnaya, M.Selleby, B.Sundman: J. Mater. Res.20 (2005) 975. 10.1557/JMR.2005.0123Suche in Google Scholar
© 2010, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal