Preparation and photocatalytic properties of TiO2 film produced via spin coating
-
Jun Yao
Abstract
TiO2 thin film coated onto glass was prepared by a spin coating method without being calcined at high temperature. X-ray diffraction showed that the TiO2 film consisted of a single anatase phase. Good adhesion was obtained between the film and the substrate. UV-vis spectra showed that the TiO2 film was transparent in the visible range and opaque in the ultraviolet range. The transmittance decreased and the absorption edge shifted as the layers increased. The photocatalytic performance of the TiO2 film was evaluated by degradation of methylene blue. The results indicated that the degradation of TiO2 film spun for 3 times (each time for 30 s) at a rotation speed of 2 500 revolutions per minute reached 93.3 %. The TiO2 film could be reused for more than 5 times without great decrease in photocatalytic activity.
References
[1] A.Modestov, V.Glezer, I.Marjasin, O.Lev: J. Phys. Chem. B101 (1997) 4623. 10.1021/jp970132nSuche in Google Scholar
[2] G.Subramania, K.Constant, R.Biswas, M.M.Sigalas, K.M.Ho: J. Am. Ceram. Soc.85 (2002) 383. 10.1111/j.1151-2916.2002.tb00284.xSuche in Google Scholar
[3] K.Shimizu, H.Imai, H.Hirashima, K.Tsukuma: Thin Solid Films.351 (1999) 220. 10.1016/S0040-6090(99)00084-xSuche in Google Scholar
[4] P.I.Gouma, M.J.Mills, K.H.Sandhage: J. Am. Ceram. Soc.83 (2000) 1007. 10.1111/j.1151-2916.2000.tb01320.xSuche in Google Scholar
[5] L.Ge, M.X.Xu, M.Sun: J. Sol-Gel. Sci. Techn.60 (2006) 287. 10.1016/j.matlet.2005.08.036Suche in Google Scholar
[6] I.Hiromichi, M.Teraski, H.Katsuki: J. Sol-Gel. Sci. Techn.22 (2001) 33. 10.1023/A:1011256118320Suche in Google Scholar
[7] W.Y.Gan, H.J.Zhao, A.Rose: Appl. Catal. A-Gen.35 (2009) 48. 10.1016/j.apcata.2008.10.054Suche in Google Scholar
[8] Y.J.Chen, D.D.Dionysios: Appl. Catal. B-Environ.69 (2006) 24. 10.1016/j.apcatb.2006.05.002Suche in Google Scholar
[9] I.N.Martyanov, K.J.Klabunde: J. Catal.225 (2004) 408. 10.1016/j.jcat.2004.04.019Suche in Google Scholar
[10] D.S.Kim, S.K.Kwak: Environ. Sci. Technol.43 (2009) 148. 10.1021/es801029hSuche in Google Scholar PubMed
[11] B.T.Jiang, S.Y.Zhang, X.Z.Guo, B.K.Jin, Y.P.Tian: Appl. Surf. Sci.255 (2009) 5975. 10.1016/j.apsusc.2009.01.049Suche in Google Scholar
[12] X.Q.Huang, N.Li: J. Alloy. Compd.465 (2008) 317. 10.1016/j.jallcom.2007.10.093Suche in Google Scholar
[13] N.Negishi, K.Takeuchi, T.Ibusuki: J. Mater. Sci.33 (1998) 5789. 10.1023/A:1004441829285Suche in Google Scholar
[14] J.G.Yu, X.J.Zhao, Q.N.Zhao: J. Mater Sci. Lett.19 (2000) 1015. 10.1023/A:1006705316651Suche in Google Scholar
[15] F.Cheng, Z.Peng, C.Liao, Z.Xu, S.Gao, C.Yan, D.Wang: J. Solid. State. Chem.107 (1998) 471. 10.1016/S0038-1098(98)00265-8Suche in Google Scholar
[16] E.L.Crepaldi, G.J.A.Soler, D.Crosso, F.Cagnol, F.Ribot, A.Sanchez: J. Am. Chem. Soc.125 (2003) 9770. 12904043; 10.1021/ja030070gSuche in Google Scholar
[17] J.Yang, S.Mei, J.M.F.Ferreira: J. Am. Ceram. Soc.87 (2004) 1616. 10.1111/j.1551-2916.2004.01616.xSuche in Google Scholar
[18] D.Shimono, S.Tanaka, T.Torikai, T.Watari, M.Murano: J. Ceram. Process. Res.21 (2001) 84.Suche in Google Scholar
[19] A.Hrussanova, L.Mirkova, T.Dobrev: J. Appl. Electrochem.32 (2002) 505. 10.1023/A:1016591810240Suche in Google Scholar
[20] R.Fretwell, P.Douglas: J. Photoch. Photobiol. A. Chem.143 (2001) 229. 10.1016/S1010-6030(01)00526-3Suche in Google Scholar
[21] A.G.Emslie, E.T.Bonnet, L.G.Peck: J. Appl. Phys.29 (1998) 858. 10.1063/1.1723300Suche in Google Scholar
[22] A.Hattori, H.Tada: J. Sol-Gel. Sci. Techn.22 (2001) 47. 10.1023/A:1011260219229Suche in Google Scholar
[23] O.C.Monteiro, M.H.M.Mendonca, M.I.S.Pereira, J.M.F.Nogueira: J. Solid. State. Electr.10 (2006) 41. 10.1007/s10008-005-0652-zSuche in Google Scholar
[24] T.F.Wen, J.P.Gao, J.Y.Shen, Z.S.Zhou: J. Mater. Sci.36 (2001) 5923. 10.1023/A:1012989012840Suche in Google Scholar
[25] K.S.Hwang, B.H.Kim: J. Sol-Gel. Sci. Techn.14 (1999) 203. 10.1023/A:1008742218033Suche in Google Scholar
[26] N.Negishi, K.Takeuchi: J. Sol-Gel. Sci. Techn.22 (2001) 23. 10.1023/A:1011204001482Suche in Google Scholar
© 2010, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal