The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
-
Y. Fartushna
Abstract
Phase equilibria in the Ti–Dy–Sn system below 40 at.% Sn were studied using differential thermal analysis, X-ray diffraction, metallography and electron microprobe. The partial liquidus and solidus projections and the melting diagram (liquidus + solidus) were constructed. A new ternary compound τ with composition Ti4.2–4.3Dy0.8–0.7Sn≲3, found by us previously, melts congruently above 1 543 °C and coexists with all the phases based on the binary compounds of the boundary binaries in the concentration interval studied.
The liquidus surface is characterized by primary crystallization regions of (βTi), (βDy), (αDy), (Ti3Sn), (Ti2Sn), (Ti5Sn3), (Dy5Sn3) and τ. Five three-phase fields in the solidus surface result from three eutectic and two transition type invariant four-phase equilibria: LE1 ⇄ (βTi) + (Ti3Sn) + (Dy5Sn3), LE2 ⇄ (Ti3Sn) + τ + (Dy5Sn3), LE3 ⇄ (βTi) + (αDy) + (Dy5Sn3), LU1 + (Ti2Sn) ⇄ (Ti3Sn) + τ and LU2 + (Ti2Sn) ⇄ (Ti5Sn3) + τ at 1 524, 1 500, 1 150, 1 543 and 1 498 °C, respectively.
In the two-phase areas (βTi) + (Dy5Sn3), (Ti3Sn) + (Dy5Sn3), (Ti2Sn) + τ and τ + (Dy5Sn3) the solidus surface has the temperature maxima at 1 620, 1 540, > 1 543 and > 1 500 °C, respectively.
References
[1] M.V.Bulanova, Y.N.Podrezov, Y.V.Fartushnaya, K.A.Meleshevich, A.V.Samelyuk, S.A.Firstov: Dokl. Nats. Akad. Nauk Ukr.4 (2005) 86.Suche in Google Scholar
[2] M.Bulanova, Y.Podrezov, Y.Fartushna: Intermetallics14 (2006) 435. 10.1016/j.intermet.2005.08.004Suche in Google Scholar
[3] Y.V.Fartushna, A.V.Kotko, A.V.Samelyuk, Y.N.Podrezov, M.V.Bulanova: High Temp. Mater. Proces.25 (2006) 67.Suche in Google Scholar
[4] Y.V.Fartushna, A.V.Kotko, M.V.Bulanova: Chemistry Metals Alloys2 (2009) 83.Suche in Google Scholar
[5] M.Bulanova, Y.Podrezov, Y.Fartushnaya, K.A.Meleshevich, A.V.Samelyuk, S.A.Firstov: Dokl. Nats. Akad. Nauk Ukr.12 (2004) 87.Suche in Google Scholar
[6] M.V.Bulanova, Y.N.Podrezov, Y.V.Fartushna, R.A.Danilyuk, R.A.Meleshevich: Teor. prakt. metal.4–5 (2006) 4.Suche in Google Scholar
[7] M.V.Bulanova, Y.N.Podrezov, Y.V.Fartushna, A.N.Rafal, S.A.Firstov: Dokl. Nats. Akad. Nauk Ukr.6 (2007) 95.Suche in Google Scholar
[8] M.Bulanova, Y.Podrezov, Y.Fartushnaya, K.Meleshevich, A.Samelyuk: J. Alloys Compds.370 (2004) L10. 10.1016/j.jallcom.2003.09.016Suche in Google Scholar
[9] F.Yin, J.C.Tedenac, F.Gascoin: Calphad31 (2007) 370. 10.1016/j.calphad.2007.01.003Suche in Google Scholar
[10] V.A.Saltykov, K.A.Meleshevich, A.V.Samelyuk, M.V.Bulanova, J.C.Tedenac: J.Alloys Compds.473 (2009) 341. 10.1016/j.jallcom.2008.05.085Suche in Google Scholar
[11] T.B.Massalski: Binary Alloy Phase Diagrams, 2nd Edition, ASM International, Metals Park, OH (1990).Suche in Google Scholar
[12] V.N.Eremenko, M.V.Bulanova, P.S.Martsenjuk: J. Alloys Compds.189 (1992) 229. 10.1016/0925-8388(92)90712-ISuche in Google Scholar
[13] A.Palenzona, P.Manfrinetti: J. Alloys Compds.201 (1993) 43. 10.1016/0925-8388(93)90859-LSuche in Google Scholar
[14] G.Venturini, A.Mesbah: J. Alloys Compds.458 (2008) 23. 10.1016/j.jallcom.2007.03.141Suche in Google Scholar
[15] H.W.King: Bull. Alloy Phase Diagr.2 (1981) 401. 10.1007/BF02868307Suche in Google Scholar
[16] K.A.Gschneidner: Bull. Alloy Phase Diagr.11 (1990) 216. 10.1007/BF03029283Suche in Google Scholar
[17] P.Rogl: Titanium: Physico-chemical Properties of its Compounds and Alloys, IAEA, Vienna (1983).Suche in Google Scholar
[18] M.Bulanova, Y.Podrezov, Y.FartushnayaA.N.Rafal, S.A.Firstov: Dokl. Nats. Akad. Nauk Ukr.11 (2006) 101.Suche in Google Scholar
[19] H.Nowotny, H.Auer-Welsbach, J.Bruss, A.Kohl: Monatsh. Chem.90 (1959) 15. 10.1007/BF00901126Suche in Google Scholar
[20] A.Palenzona, F.Merlo: Atti Accad. Naz. Lincei, Rend. Fis., Mat. Nat.40 (1966) 617.Suche in Google Scholar
[21] W.Jeitchko, E.Parthe: Acta Crystallogr.22 (1967) 551. 10.1107/S0365110X67001112Suche in Google Scholar
[22] A.Iandelli, A.Palenzona, in: K.Gschneidner, L.Eyring (Ed.), Handbook of the physics and chemistry of rare earth, North Holland Publishing Company, Amsterdam2 (1982) 1.Suche in Google Scholar
© 2010, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal