Formation of clathrates Ba–M–Ge(M = Mn, Fe, Co)
-
Andriy Grytsiv
, Natalja Melnychenko-Koblyuk , Navida Nasir , Peter Rogl , Adriana Saccone und Harald Schmid
Abstract
In order to define the ability of magnetic elements M = Mn, Fe, Co to stabilise clathrate structures, alloys of the Ba – M – Ge system were investigated in the as-cast state and after annealing at 700°C and 800°C by means of X-ray powder diffraction, light optical and electron-probe microanalysis. Temperatures of phase transformations were derived from differential thermal analysis. Results are summarised in (i) isothermal sections at 700°C and 800°C, (ii) solidus and liquidus surfaces covering the region of existence for both clathrate phases in these systems. Invariant reactions during crystallisation are presented in form of Schultz – Scheil diagrams.
In all three cases only limited solubility of the M element was found for clathrate IX (Ba6Ge25) i. e. the Ge-framework in the crystal structure of Ba6MxGe25 – x dissolves 0.6 atom of Mn, and about 1 atom of Fe and Co per unit cell. The maximum solubility of iron in clathrate type I (Ba8Ge46 – x) was found to be less than 0.5 Fe atom per unit cell, and clathrates with Mn and Co contain up to 1.0 and 2.5 atoms in the unit cell, respectively. Whilst Fe does not decrease the formation temperature of the clathrate phase, Mn and Co decrease it from 770°C (for binary Ba8Ge43) to 766°C and 749°C, respectively.
References
[1] C.Uher, in: D.M.Rowe (Ed.), CRC Handbook of Thermoelectries, CRC Press, Boca Raton, USA (2006).Suche in Google Scholar
[2] G.Nolas, G.Slack, D.T.Morelli, T.M.Tritt, A.C.Ehrlich: J. Appl. Phys.79 (1996) 4002.Suche in Google Scholar
[3] D.M.Rowe (Ed.): CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, USA (1995).Suche in Google Scholar
[4] T.Kawaguchi, K.Tanigaki, M.Yasukawa: Applied Physics Letters77 (2000) 3438–3440.10.1063/1.1328048Suche in Google Scholar
[5] K.Tanigaki, T.Kawaguchi, A.Nagai, M.Yasukawa: AIP – Conference Proceedings 590 (2001) 495–498.10.1063/1.1420159Suche in Google Scholar
[6] K.C.Yang, J.Zhao, J.P.Lu: Phys. Rev. B70 (2004) 73201–1-4.10.1103/PhysRevB.70.073201Suche in Google Scholar
[7] Li.Yang, J.Ross: J. Mat. Res. Soc. Symp. Proc.793 (2004) 175.180.Suche in Google Scholar
[8] L.Yang, J.Ross: Applied Physics Letters83 (2003) 2868–2870.10.1063/1.1616658Suche in Google Scholar
[9] L.Yang, J.Ross: IEEE Transaction on Applied Superconductivity13 (2003) 3047–3050.10.1109/TASC.2003.812069Suche in Google Scholar
[10] L.Yang, J.Ross, J.A.Larrea, E.Baggio-Saitovitch: Physica C408 (2004) 869–871.Suche in Google Scholar
[11] W.DörrscheidtH.Schäfler: Z. f. Naturforschung B31 (1976) 1050–1052.10.1515/znb-1976-0810Suche in Google Scholar
[12] A.Dascoulidou, F.Schucht, W.Jung, H.U.Schuster: Z. f. Anorganische u. Allgemeine Chemie624 (1998) 119–123.10.1002/(SICI)1521-3749(199801)624:1<119::AID-ZAAC119>3.0.CO;2-ESuche in Google Scholar
[13] A.Dascoulidou, P.Mueller, W.Bronger: Anorganische u. Allgemeine Chemie624 (1998) 124–128.10.1002/(SICI)1521-3749(199801)624:1<124::AID-ZAAC124>3.0.CO;2-USuche in Google Scholar
[14] W.Dörrscheidt, N.Niess, H.Schäfler: Z. f. Naturforschung B31 (1976) 890–891.10.1515/znb-1976-0634Suche in Google Scholar
[15] T.Roisnel, J.Rodriguez-Carvajal: Materials-Science-Forum378–381 (2001) 118.Suche in Google Scholar
[16] W.Carrillo-Cabrera, H.Borrmann, S.Paschen, M.Baenitz, F.Steglich, Y.Grin: J. Solid State Chemistry178 (2005) 715–728.10.1016/j.jssc.2004.11.011Suche in Google Scholar
[17] T.B.Masasalski: Binary Alloy Phase Diagrams, 2nd (Ed.), ASM International, Materials Park, OH, 1990.Suche in Google Scholar
[18] W.Carrillo-Cabrera, J.Curda, K.Petters, M.Baenitz, Y.Grin, H.G.von Schnering: Z. Kristallogr. New Crystal Structures215 (2000) 321.Suche in Google Scholar
[19] W.Carrillo-Cabrera, S.Budnyk, Y.Prots, Y.Grin: Z. Anorg. Allg. Chem.630 (2004) 7226.Suche in Google Scholar
[20] S.J.Kim, S.Hu, C.Uher, T.Hogan, B.Huang, J.Corbett, M.Kanatzidis: J. Solid State Chemistry153 (2000) 321–329.10.1006/jssc.2000.8777Suche in Google Scholar
[21] H.Fukuoka, K.Iwai, S.Yamanaka, H.Abe, K.Yoza, L.Haming: J. Solid State Chemistry151 (2000) 117–121.10.1006/jssc.2000.8632Suche in Google Scholar
[22] F.M.Grosche, H.Q.Yuan, W.Carrillo-Cabrera, S.Paschen, C.Langhammer, F.Kromer, G.Sparn, M.Baenitz, Y.Grin, F.Steglich: Physical Rev. Letter.87 (2001) 247003.Suche in Google Scholar
[23] N.Nasir, N.Melnychenko-Koblyuk, A.Grytsiv, P.Rogl, E.Bauer, E.Royanian, H.Michar, G.Hilscher, G.Giester, accepted Intermetallics.Suche in Google Scholar
[24] H.Takizawa, T.Sato, T.Endo, M.Shimada: J. Solid State Chemistry73 (1988) 40–46.10.1016/0022-4596(88)90051-5Suche in Google Scholar
[25] K.Schubert, T.R.Anantharaman, H.O.K.Ata, H.G.Meissner, M.Pötzschke, W.Rossteutscher, E.Stolz: Naturwissenschaften47 (1960) 512.Suche in Google Scholar
[26] K.Schubert, H.Pfisterer: Z. Metallkunde41 (1954) 433–441.Suche in Google Scholar
[27] B.Malaman, J.Steinmetz, B.Roques: J. Less Common Metals75 (1980) 155–176.10.1016/0022-5088(80)90114-9Suche in Google Scholar
[28] B.Lebech, J.Bernhard, T.Freltoft: J. Solid State Chemistry1 (1989) 6105–6122.Suche in Google Scholar
[29] A.M.Van Der Kraan, K.H.J.Buschow: Physica B & C138 (1986) 55–62.10.1016/0378-4363(86)90492-4Suche in Google Scholar
[30] M.Schmidt, P.G.Radaelli, M.J.Gutmann, S.J.L.Billinge, N.Hur, S.W.Cheong: J. Phys.: Condens. Matter16 (2004) 7287–7302.Suche in Google Scholar
[31] J.Evers, G.Oehlinger, A.Weiss: Z. Naturforschung B. Anorganische Chemie, Organische Chemie32 (1977) 1352–1353.Suche in Google Scholar
[32] J.B.Forsyth, P.J.Brown: J. Physics: Condensed Matter2 (1990) 2713–2720.Suche in Google Scholar
[33] T.Ohba, N.Watanabe, Y.Komura: Acta Crystallogr. B, Structural Science40 (1984) 1351–354.Suche in Google Scholar
© 2009, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Feature
- Materials constitution and computational thermodynamics in the context of 100 years of IJMR – Zeitschrift für Metallkunde
- Upgrading CALPHAD to microstructure simulation: the phase-field method
- Prediction, determination and validation of phase diagrams via the global study of energy landscapes
- Alloy development using modern tools
- Phase equilibria and thermal analysis in the Fe–Mn–Ni system
- Integrated approach to thermodynamics, phase relations, liquid densities and solidification microstructures in the Al–Bi–Cu system
- Formation of clathrates Ba–M–Ge(M = Mn, Fe, Co)
- New paradigm of a metastable phase diagram presenting structural transformations induced by annealing of Si–C–N amorphous ceramics derived from polymer precursors
- Basic
- Thermodynamic assessment of the Ce–Si, Y–Si, Mg–Ce–Si and Mg–Y–Si systems
- Thermodynamic re-assessment of the Ti–Al–Nb system
- Effect of varying oxygen partial pressure on the properties of reactively evaporated zinc aluminate thin films
- Applied
- Matrix induced synthesis of Y3Al5O12: Ce phosphor through the Pechini method
- Microstructure and room temperature compressive properties of holmium doped DS NiAl-Cr(Mo)-Hf eutectic alloy
- Evaporation mechanism of aluminum during electron beam cold hearth melting of Ti64 alloy
- 560°C isothermal section of the Zn–Fe–Ni–Si quaternary system at the zinc-rich corner
- DGM News
- Personal
Artikel in diesem Heft
- Contents
- Contents
- Feature
- Materials constitution and computational thermodynamics in the context of 100 years of IJMR – Zeitschrift für Metallkunde
- Upgrading CALPHAD to microstructure simulation: the phase-field method
- Prediction, determination and validation of phase diagrams via the global study of energy landscapes
- Alloy development using modern tools
- Phase equilibria and thermal analysis in the Fe–Mn–Ni system
- Integrated approach to thermodynamics, phase relations, liquid densities and solidification microstructures in the Al–Bi–Cu system
- Formation of clathrates Ba–M–Ge(M = Mn, Fe, Co)
- New paradigm of a metastable phase diagram presenting structural transformations induced by annealing of Si–C–N amorphous ceramics derived from polymer precursors
- Basic
- Thermodynamic assessment of the Ce–Si, Y–Si, Mg–Ce–Si and Mg–Y–Si systems
- Thermodynamic re-assessment of the Ti–Al–Nb system
- Effect of varying oxygen partial pressure on the properties of reactively evaporated zinc aluminate thin films
- Applied
- Matrix induced synthesis of Y3Al5O12: Ce phosphor through the Pechini method
- Microstructure and room temperature compressive properties of holmium doped DS NiAl-Cr(Mo)-Hf eutectic alloy
- Evaporation mechanism of aluminum during electron beam cold hearth melting of Ti64 alloy
- 560°C isothermal section of the Zn–Fe–Ni–Si quaternary system at the zinc-rich corner
- DGM News
- Personal