Effect of varying oxygen partial pressure on the properties of reactively evaporated zinc aluminate thin films
-
Saira Riaz
and Shahzad Naseem
Abstract
Thin films of zinc aluminate are prepared by reactive evaporation. The composition of these films is varied by changing the oxygen partial pressure and by post-deposition annealing. It is observed that there is wide variation in the band gap values (2.34 – 4.54 eV) depending on the oxygen partial pressure. Further, there is a strong dependence of band gap values on the post-deposition annealing conditions. One of the films exhibits spinel (AB2O4) structure, whereas the rest are amorphous. A resistivity value of as low as 3.6 × 10– 3 ohm-cm has been measured. The compositional studies, using mass spectrometry, reported in this paper point towards novel transparent conducting oxides.
References
[1] S.Naseem, T.J.Coutts: Thin Solid Films137 (1986) 65.Search in Google Scholar
[2] S.Naseem, I.A.Rauf, K.Hussain, N.A.Malik: Thin Solid Films156 (1988) 161.Search in Google Scholar
[3] J.C.Jiang, K.Lian, E.I.Meletis: Thin Solid Films411 (2002) 203.Search in Google Scholar
[4] S.Im, B.J.Jin, S.Yi: J. Appl. Phys.87 (2000) 4558.Search in Google Scholar
[5] S.Muthukumar, N.W.Emanetoglu, G.Patounakis: J. Vac. Sci. Technol. A19 (2001) 1850.Search in Google Scholar
[6] Y.J.Kim, S.M.Chung, Y.H.Jeong: J. Vac. Sci. Technol. A19 (2001) 1095.Search in Google Scholar
[7] M.Purica, E.Budianu, E.Rusu: Thin Solid Films383 (2001) 284.Search in Google Scholar
[8] R.W.Birkmire, E.Eser: Annu. Rev. Mater. Sci.27 (1997) 625.Search in Google Scholar
[9] K.Ellmer: J. Phys. D: Appl. Phys.34 (2001) 3097.10.1088/0022-3727/34/21/301Search in Google Scholar
[10] M.Chen, Z.L.Pei, X.Wang, C.Sun, L.S.Wang: J. Vac. Sci. Technol. A19 (2001) 963.Search in Google Scholar
[11] K.T.R.Reddy, R.W.Miles: J. Mater. Sci. Lett.17 (1998) 279.Search in Google Scholar
[12] S.K.Sampath, J.F.Cordaro: J. Am. Ceram. Soc.81 (1998) 649.Search in Google Scholar
[13] M.H.Asghar, M.B.Khan, Z.A.Khan, S.Naseem: Turk. J. Phys.29 (2005) 43.Search in Google Scholar
[14] G.F.Hetting, H.Worl, H.H.Weiter: Z. Anorg. Allg. Chem.283 (1956) 207.Search in Google Scholar
[15] C.O.Arean, B.S.Sintes, G.T.Palomino, C.M.Carbonell, E.E.Platero, J.B.P.Soto: Microporous Mater.8 (1997) 187.Search in Google Scholar
[16] M.A.Valenzuela, P.Bosh, G.Aguilar-Rios, A.Montoya, I.Schifter: J. Sol–Gel Sci. Technol.8 (1997) 107.Search in Google Scholar
[17] A.R.Phani, M.Passacantando, S.Santucci: Materials Chemistry and Physics68 (2001) 66.Search in Google Scholar
[18] M.Zawadzki, J.Wrzyszcz: Mater. Res. Bull.35 (2000) 109.Search in Google Scholar
[19] Z.Chen, E.Shi, Y.Zheng, W.Li, N.Wu, W.Zhong: Mater. Lett.56 (2002) 601.Search in Google Scholar
[20] M.Zawadzki: Solid State Sciences8 (2006) 14.10.1016/j.solidstatesciences.2005.08.006Search in Google Scholar
[21] Y.Nakanishi, A.Miyake, H.Kominami: Appl. Surf. Sci.142 (1999) 233.Search in Google Scholar
[22] K.Haga, M.Kamidaira, Y.Kashiwaba, T.Sekiguchi, H.Watanabe: J. Cryst. Growth77 (2000) 214.Search in Google Scholar
[23] D.C.Fujita, S.Fujita, S.Park: Phys. Stat. Sol. A176 (1999) 579.Search in Google Scholar
[24] E.Jimenez-Gonzalez, J.A.Soto-Urueta, R.Suarez-Parra: J. Cryst. Growth192 (1998) 430.Search in Google Scholar
[25] O.Vigil, F.Cruz, G.Santana, L.Vaillant, A.Morales-Acevedo, G.Contreras-Puente: Appl. Surf. Sci.27 (2000) 161.Search in Google Scholar
[26] B.J.Jin, H.S.Woo, S.Im, S.H.Bae, S.Y.Lee: Appl. Surf. Sci.521 (2001) 169.Search in Google Scholar
[27] X.Q.Meng, W.Zhen, J.P.Guo, X.J.Fan: Appl. Phys. A: Mater. Sci. Process.70 (2000) 421.10.1007/s003390051060Search in Google Scholar
[28] T.Minemoto, T.Negami, S.Nishiwaki, H.Takakura, Y.Hamakawa: Thin Solid Films372 (2000) 173.Search in Google Scholar
[29] T.Minami, H.Sonohara, T.Kakumu, S.Takata: Jpn. J. Appl. Phys.34 (1995) L971.10.1143/JJAP.34.L971Search in Google Scholar
[30] T.Minami, T.Yamamoto, T.Miyata: Thin Solid Films366 (2000) 63.Search in Google Scholar
[31] K.Tominaga, M.Kataoka, H.Manabe, T.Ueda, I.Mori: Thin Solid Films84 (1996) 290.Search in Google Scholar
[32] S.Riaz, S.Naseem: Sci. Inter.15 (2003) 99.Search in Google Scholar
[33] L.J.Van der Pauw: Philips Research Reports13 (1958) 1.Search in Google Scholar
[34] R.Hall: J. Sci. Instrum.44 (1967) 53.10.1088/0950-7671/44/1/312Search in Google Scholar
[35] S.Brehme, F.Fenske, W.Fuhs, E.Nebauer, M.Poschenrieder, B.Selle, I.Sieber: Thin Solid Films342 (1999) 167.Search in Google Scholar
[36] J.I.Pankove: “Optical Processes in Semiconductors”, Dover Publications, New York, 1971.Search in Google Scholar
[37] E.Burstein: Phys. Rev.93 (1954) 632.10.1103/PhysRev.93.632Search in Google Scholar
[38] T.S.Moss: Proc. Phys. Soc. B67 (1954) 775.10.1088/0370-1301/67/10/306Search in Google Scholar
[39] T.Minami: MRS Bulletin, August (2000) 38.10.1557/mrs2000.149Search in Google Scholar
[40] A.P.Roth, J.B.Webb, D.F.Williams: Solid State Commun.39 (1981) 1269.Search in Google Scholar
[41] B.E.Semelius, K.-F.Berggren, Z.-C.Jin, I.Hamberg, C.G.Granqvist: Phys. Rev. B37 (1988) 10244.Search in Google Scholar
[42] A.P.Roth, J.B.Webb, D.F.Williams: Phys. Rev. B25 (1982) 7836.Search in Google Scholar
[43] K.-F.Berggren, B.E.Semelius: Phys. Rev. B24 (1981) 1971.Search in Google Scholar
[44] D.H.Zhang, R.W.Gao, H.L.Ma: Thin Solid Films295 (1997) 83.Search in Google Scholar
[45] B.E.Semelms, K.-F.Berggren, Z.-C.Jin, I.Hamberg, C.G.Granqvist: Phys. Rev. B37 (1988) 10244.Search in Google Scholar
© 2009, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Feature
- Materials constitution and computational thermodynamics in the context of 100 years of IJMR – Zeitschrift für Metallkunde
- Upgrading CALPHAD to microstructure simulation: the phase-field method
- Prediction, determination and validation of phase diagrams via the global study of energy landscapes
- Alloy development using modern tools
- Phase equilibria and thermal analysis in the Fe–Mn–Ni system
- Integrated approach to thermodynamics, phase relations, liquid densities and solidification microstructures in the Al–Bi–Cu system
- Formation of clathrates Ba–M–Ge(M = Mn, Fe, Co)
- New paradigm of a metastable phase diagram presenting structural transformations induced by annealing of Si–C–N amorphous ceramics derived from polymer precursors
- Basic
- Thermodynamic assessment of the Ce–Si, Y–Si, Mg–Ce–Si and Mg–Y–Si systems
- Thermodynamic re-assessment of the Ti–Al–Nb system
- Effect of varying oxygen partial pressure on the properties of reactively evaporated zinc aluminate thin films
- Applied
- Matrix induced synthesis of Y3Al5O12: Ce phosphor through the Pechini method
- Microstructure and room temperature compressive properties of holmium doped DS NiAl-Cr(Mo)-Hf eutectic alloy
- Evaporation mechanism of aluminum during electron beam cold hearth melting of Ti64 alloy
- 560°C isothermal section of the Zn–Fe–Ni–Si quaternary system at the zinc-rich corner
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Feature
- Materials constitution and computational thermodynamics in the context of 100 years of IJMR – Zeitschrift für Metallkunde
- Upgrading CALPHAD to microstructure simulation: the phase-field method
- Prediction, determination and validation of phase diagrams via the global study of energy landscapes
- Alloy development using modern tools
- Phase equilibria and thermal analysis in the Fe–Mn–Ni system
- Integrated approach to thermodynamics, phase relations, liquid densities and solidification microstructures in the Al–Bi–Cu system
- Formation of clathrates Ba–M–Ge(M = Mn, Fe, Co)
- New paradigm of a metastable phase diagram presenting structural transformations induced by annealing of Si–C–N amorphous ceramics derived from polymer precursors
- Basic
- Thermodynamic assessment of the Ce–Si, Y–Si, Mg–Ce–Si and Mg–Y–Si systems
- Thermodynamic re-assessment of the Ti–Al–Nb system
- Effect of varying oxygen partial pressure on the properties of reactively evaporated zinc aluminate thin films
- Applied
- Matrix induced synthesis of Y3Al5O12: Ce phosphor through the Pechini method
- Microstructure and room temperature compressive properties of holmium doped DS NiAl-Cr(Mo)-Hf eutectic alloy
- Evaporation mechanism of aluminum during electron beam cold hearth melting of Ti64 alloy
- 560°C isothermal section of the Zn–Fe–Ni–Si quaternary system at the zinc-rich corner
- DGM News
- Personal