Home Matrix induced synthesis of Y3Al5O12: Ce phosphor through the Pechini method
Article
Licensed
Unlicensed Requires Authentication

Matrix induced synthesis of Y3Al5O12: Ce phosphor through the Pechini method

  • Kai Zhang , Wenbin Hu , Jun Li , Yiping Tang and Hezhou Liu
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Trivalent cerium actived yttrium aluminum garnet (YAG: Ce) phosphor was prepared using the Pechini method. Phase transition during calcination was investigated through Fourier transform infrared spectroscopy and X-ray diffraction. The results show that the powders directly transform into the pure YAG phase at 80°C. The dimension of phosphor calcined at 1200°C is micro-scale, which consists of nanometer scale primary particles. The effect of Ce doping content and calcination temperature on the luminescence properties is also discussed. The maximum emission is obtained for about 1 at.% Ce additions. The concentration quench effect is observed when Ce content increases beyond this limit. With the increment of calcination temperature, the emission intensity and lifetime increase.


* Correspondence address, Professor Hezhou Liu No. 800 Dongchuan Road Minhang district, 200240 Shanghai, P.R. China Tel.: +86 21 3420 2554 Fax: +86 21 6282 2012 E-mail:

References

[1] N.Saito, S.Matsuda, T.Ikegami: J. Am. Ceram. Soc.81 (1998) 2023.Search in Google Scholar

[2] C.Lu, H.Hong, R.Jagannathan: J. Mater. Chem.12 (2002) 2525.Search in Google Scholar

[3] D.Haranath, H.Chande, P.Shama, S.Sigh: Appl. Phys. Lett.89 (2006) 173118.Search in Google Scholar

[4] A.Ikesue, K.Kamata, K.Yoshida: J. Am. Ceram. Soc.78 (1995) 2545.Search in Google Scholar

[5] B.Cockayne, B.Lent: J. of Cryst. Growth46 (1979) 371.Search in Google Scholar

[6] A.Katelnikovas, P.Vitta, P.Pobedinskas, G.Tamulaitis, A.Zukauskas, J.Jorgensen, A.Kareiva: J. of Cryst. Growth30 (2007) 361.Search in Google Scholar

[7] L.Seonghoon, S.Soo Yeon: J. Electrochem. Soc.149 (2002) 85.Search in Google Scholar

[8] X.Li, H.Liu, J.Wang, H.Cui, F.Han: Mater. Res. Bull.39 (2004) 1923.Search in Google Scholar

[9] Y.Pan, M.Wu, Q.Su: J. Phys. Chem. Solids65 (2004) 845.Search in Google Scholar

[10] Y.Zhou, L.Lin, M.Yu, S.Wang, H.Zhang: Mater. Lett.56 (2002) 628.Search in Google Scholar

[11] M.Pechini, N.Adams: US Patent 1967 3330697.Search in Google Scholar

[12] O.Sera, S.Cicillini, R.Ishiki: J. Alloys Compd.303 (2000) 316.Search in Google Scholar

[13] H.Guo, M.Yin, N.Dong, M.Xu, L.Lou, W.Zhang: Appl. Surf. Sci.243 (2005) 245.Search in Google Scholar

[14] P.Colomban: J. Mater. Sci.24 (1989) 3002.10.1007/BF02385660Search in Google Scholar

[15] P.Apte, H.Burke, H.Pickup: J. Mater. Res.7 (1992) 706.Search in Google Scholar

[16] G.Blasse, A.Bril: Appl. Phys. Lett.11 (1967) 53.Search in Google Scholar

[17] E.Zych, C.Brecher, J.Glodo: J. Phys Condens. Matter.12 (2000) 1947.Search in Google Scholar

[18] M.J.Weber: Solid State Commun.12 (1973) 741.10.1016/0038-1098(73)90326-8Search in Google Scholar

[19] W.W.Zhang, W.P.Zhang, P.B.Xie, M.Yin, H.T.Chen, L.Jing, Y.S.Zhang, L.R.Lou, S.D.Xia: J. Colloid. Interf. Sci.262 (2003) 588.Search in Google Scholar

[20] A.Bol, Ageeth, A.Meijerink: J. Phys. Chem. B105 (2001) 10197.Search in Google Scholar

Received: 2008-11-12
Accepted: 2008-10-31
Published Online: 2013-06-11
Published in Print: 2009-02-01

© 2009, Carl Hanser Verlag, München

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110004/html
Scroll to top button