Home New paradigm of a metastable phase diagram presenting structural transformations induced by annealing of Si–C–N amorphous ceramics derived from polymer precursors
Article
Licensed
Unlicensed Requires Authentication

New paradigm of a metastable phase diagram presenting structural transformations induced by annealing of Si–C–N amorphous ceramics derived from polymer precursors

  • Jerzy Andrzej Golczewski
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Amorphous Si – C – N domains, nanocrystalline SiC and nanocrystalline Si3N4 identified in the structure of Si – C – N polymer derived ceramics (SiCN PDCs) have been proposed as metastable phases am-SICN, NASIC and NASIN. To study structural transformations of SiCN PDCs, the thermodynamic equilibria of these phases have been computed using previously derived Gibbs energies G(am-SICN), G(NASIC) and G(NASIN). The computational results are presented in the form of metastable phase diagrams. A new paradigm of these diagrams is explained as due to time dependence implemented into the Gibbs energies G(NASIC) and G(NASIN) and the application to interpretation of the crystallization course observed for SiCN PDCs is discussed.


* Correspondence address, J. A. Golczewski MPI für Metallforschung Heisenbergstr. 3, D-70569 Stuttgart, Germany Tel.: +49 711 6 89 31 04 Fax: +49 711 6 89 31 31 E-mail: address

References

[1] J.Bill, F.Aldinger: Adv. Mater.7 (1995) 775.Search in Google Scholar

[2] H.P.Baldus, M.Jansen: Angew. Chem. Int. Ed. Engl.36 (1997) 328.Search in Google Scholar

[3] F.Aldinger, M.Weinmann, J.Bill: Pure & Appl. Chem.70 (1998) 439.Search in Google Scholar

[4] E.Kroke, Y.L.Li, C.Konetschny, E.Lecomte, C.Fasel, R.Riedel: Mater. Sci. Eng. R26 (2000) 97.Search in Google Scholar

[5] M.Jansen, B.Jäschke, T.Jäschke: Structure and Bonding101 (2002) 138.Search in Google Scholar

[6] H.Lutz, M.Bruns, F.Link, H.Baumann: Thin Solid Films332 (1998) 230.Search in Google Scholar

[7] J.Vlček, Š.Potocký, J.Čížek, J.Houška, M.Kormunda, P.Zeman, V.Peřina, J.Zemek, Y.Setsuhara, S.Konuma: J. Vac. Sci. Technol. A23 (2005) 1513.Search in Google Scholar

[8] M.Bruns, U.Geckle, V.Trouillet, M.Rudolphi, H.Baumann: J. Vac. Sci. Technol. A23 (2005) 1114.Search in Google Scholar

[9] Z.H.Yang, D.C.Jia, Y.Zhou, C.Q.Yu: Ceram. Int.33 (2007) 1573.Search in Google Scholar

[10] H.P.Baldus, M.Jansen, O.Wagner: Key Eng. Mater.75 (1994) 89.Search in Google Scholar

[11] R.Riedel, A.Kienzle, W.Dressler, L.Ruwisch, J.Bill, F.Aldinger: Nature382 (1996) 796.Search in Google Scholar

[12] M.Christ, G.Thurn, M.Weinmann, J.Bill, F.Aldinger: J. Am. Ceram. Soc.83 (2000) 3025.Search in Google Scholar

[13] M.Christ, A.Zimmermann, F.Aldinger: J. Mater. Res.16 (2001) 1994.Search in Google Scholar

[14] J.Bill, J.Schumacher, K.Müller, S.Schemp, J.Seitz, J.Dürr, H.-P.Lamparter, J.Golczewski, J.Peng, H. J.Seifert, F.Aldinger: Z. Metallkd., 91 (2000) 335.Search in Google Scholar

[15] H.-J.Kleebe, H.Störmer, S.Trassl, G.Ziegler: Appl. Organometal. Chem.15 (2001) 858.Search in Google Scholar

[16] J.Dixmier, R.Bellissent, D.Bahloul, P.Goursat: J. Eur. Ceram. Soc.13 (1994) 293.Search in Google Scholar

[17] S.Schempp, J.Dürr, P.Lamparter, J.Bill, F.Aldinger: J. Phys. Sci.53a (1998) 127.10.1515/zna-1998-3-405Search in Google Scholar

[18] J.Haug, P.Lamparter, M.Weinmann, F.Aldinger: Chem. Mater.16 (2004) 72.Search in Google Scholar

[19] N.R.Dando, A. J.Perrotta, C.Strohmann, R.M.Stewart, D.Seyferth: Chem. Mater.5 (1993) 1624.Search in Google Scholar

[20] J.Seitz, J.Bill, N.Egger, F.Aldinger: J. Eur. Ceram. Soc.16 (1996) 885.Search in Google Scholar

[21] J.Haug, P.Lamparter, M.Weinmann, F.Aldinger: Chem. Mater.16 (2004) 83.Search in Google Scholar

[22] J.A.Golczewski, F.Aldinger: Int. J. Mater. Res.97 (2006) 114.Search in Google Scholar

[23] M.Amkreutz, T.Frauenheim: Phys. Rev. B65 (2002) 134113.Search in Google Scholar

[24] N.Resta, C.Kohler, H.R.Trebin: J. Am. Ceram. Soc.86 (2003) 1409.Search in Google Scholar

[25] M.Amkreutz: Soft Mater.4[2–4] (2006) 187.10.1080/15394450701310046Search in Google Scholar

[26] Y.Iwamoto, W.Vögler, E.Kroke, R.Riedel: J. Am. Ceram. Soc.84 (2001) 2170.Search in Google Scholar

[27] H.Schmidt, G.Borchardt, A.Müller, J.Bill: J. Non-Crystalline Solids341 (2004) 133.Search in Google Scholar

[28] J.W.Christian: The Theory of Transformations in Metals and Alloys, Pergamon, London (1975).Search in Google Scholar

[29] E.D.Zanotto, in: M.C.Weinberg (Ed.), Nucleation and Crystallization in Liquids and Glasses, Vol. 30, A. Ceram. Soc., Westerville, OH (1992) 65.Search in Google Scholar

[30] J.A.Golczewski, F.Aldinder: J. Non-Cryst. Solids347 (2004) 204.Search in Google Scholar

[31] J.A.Golczewski: J. Ceram. Soc. Jap.114 (2006) 950.10.2109/jcersj.114.950Search in Google Scholar

[32] J.A.Golczewski: Int. J. Mater. Res.97 (2006) 729.10.3139/146.101295Search in Google Scholar

[33] H.Gleiter: Prog. Mater. Sci.33 (1989) 223.10.1016/0079-6425(89)90001-7Search in Google Scholar

[34] R.W.Siegle, in: F.E.Fujita (Ed.), Physics of New Materials, Springer Series in Material Sciences, Vol. 27, Springer Verlag, Berlin (1994) 65.Search in Google Scholar

Received: 2008-11-14
Accepted: 2008-11-19
Published Online: 2013-06-11
Published in Print: 2009-02-01

© 2009, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110001/html
Scroll to top button