New paradigm of a metastable phase diagram presenting structural transformations induced by annealing of Si–C–N amorphous ceramics derived from polymer precursors
-
Jerzy Andrzej Golczewski
Abstract
Amorphous Si – C – N domains, nanocrystalline SiC and nanocrystalline Si3N4 identified in the structure of Si – C – N polymer derived ceramics (SiCN PDCs) have been proposed as metastable phases am-SICN, NASIC and NASIN. To study structural transformations of SiCN PDCs, the thermodynamic equilibria of these phases have been computed using previously derived Gibbs energies G(am-SICN), G(NASIC) and G(NASIN). The computational results are presented in the form of metastable phase diagrams. A new paradigm of these diagrams is explained as due to time dependence implemented into the Gibbs energies G(NASIC) and G(NASIN) and the application to interpretation of the crystallization course observed for SiCN PDCs is discussed.
References
[1] J.Bill, F.Aldinger: Adv. Mater.7 (1995) 775.Search in Google Scholar
[2] H.P.Baldus, M.Jansen: Angew. Chem. Int. Ed. Engl.36 (1997) 328.Search in Google Scholar
[3] F.Aldinger, M.Weinmann, J.Bill: Pure & Appl. Chem.70 (1998) 439.Search in Google Scholar
[4] E.Kroke, Y.L.Li, C.Konetschny, E.Lecomte, C.Fasel, R.Riedel: Mater. Sci. Eng. R26 (2000) 97.Search in Google Scholar
[5] M.Jansen, B.Jäschke, T.Jäschke: Structure and Bonding101 (2002) 138.Search in Google Scholar
[6] H.Lutz, M.Bruns, F.Link, H.Baumann: Thin Solid Films332 (1998) 230.Search in Google Scholar
[7] J.Vlček, Š.Potocký, J.Čížek, J.Houška, M.Kormunda, P.Zeman, V.Peřina, J.Zemek, Y.Setsuhara, S.Konuma: J. Vac. Sci. Technol. A23 (2005) 1513.Search in Google Scholar
[8] M.Bruns, U.Geckle, V.Trouillet, M.Rudolphi, H.Baumann: J. Vac. Sci. Technol. A23 (2005) 1114.Search in Google Scholar
[9] Z.H.Yang, D.C.Jia, Y.Zhou, C.Q.Yu: Ceram. Int.33 (2007) 1573.Search in Google Scholar
[10] H.P.Baldus, M.Jansen, O.Wagner: Key Eng. Mater.75 (1994) 89.Search in Google Scholar
[11] R.Riedel, A.Kienzle, W.Dressler, L.Ruwisch, J.Bill, F.Aldinger: Nature382 (1996) 796.Search in Google Scholar
[12] M.Christ, G.Thurn, M.Weinmann, J.Bill, F.Aldinger: J. Am. Ceram. Soc.83 (2000) 3025.Search in Google Scholar
[13] M.Christ, A.Zimmermann, F.Aldinger: J. Mater. Res.16 (2001) 1994.Search in Google Scholar
[14] J.Bill, J.Schumacher, K.Müller, S.Schemp, J.Seitz, J.Dürr, H.-P.Lamparter, J.Golczewski, J.Peng, H. J.Seifert, F.Aldinger: Z. Metallkd., 91 (2000) 335.Search in Google Scholar
[15] H.-J.Kleebe, H.Störmer, S.Trassl, G.Ziegler: Appl. Organometal. Chem.15 (2001) 858.Search in Google Scholar
[16] J.Dixmier, R.Bellissent, D.Bahloul, P.Goursat: J. Eur. Ceram. Soc.13 (1994) 293.Search in Google Scholar
[17] S.Schempp, J.Dürr, P.Lamparter, J.Bill, F.Aldinger: J. Phys. Sci.53a (1998) 127.10.1515/zna-1998-3-405Search in Google Scholar
[18] J.Haug, P.Lamparter, M.Weinmann, F.Aldinger: Chem. Mater.16 (2004) 72.Search in Google Scholar
[19] N.R.Dando, A. J.Perrotta, C.Strohmann, R.M.Stewart, D.Seyferth: Chem. Mater.5 (1993) 1624.Search in Google Scholar
[20] J.Seitz, J.Bill, N.Egger, F.Aldinger: J. Eur. Ceram. Soc.16 (1996) 885.Search in Google Scholar
[21] J.Haug, P.Lamparter, M.Weinmann, F.Aldinger: Chem. Mater.16 (2004) 83.Search in Google Scholar
[22] J.A.Golczewski, F.Aldinger: Int. J. Mater. Res.97 (2006) 114.Search in Google Scholar
[23] M.Amkreutz, T.Frauenheim: Phys. Rev. B65 (2002) 134113.Search in Google Scholar
[24] N.Resta, C.Kohler, H.R.Trebin: J. Am. Ceram. Soc.86 (2003) 1409.Search in Google Scholar
[25] M.Amkreutz: Soft Mater.4[2–4] (2006) 187.10.1080/15394450701310046Search in Google Scholar
[26] Y.Iwamoto, W.Vögler, E.Kroke, R.Riedel: J. Am. Ceram. Soc.84 (2001) 2170.Search in Google Scholar
[27] H.Schmidt, G.Borchardt, A.Müller, J.Bill: J. Non-Crystalline Solids341 (2004) 133.Search in Google Scholar
[28] J.W.Christian: The Theory of Transformations in Metals and Alloys, Pergamon, London (1975).Search in Google Scholar
[29] E.D.Zanotto, in: M.C.Weinberg (Ed.), Nucleation and Crystallization in Liquids and Glasses, Vol. 30, A. Ceram. Soc., Westerville, OH (1992) 65.Search in Google Scholar
[30] J.A.Golczewski, F.Aldinder: J. Non-Cryst. Solids347 (2004) 204.Search in Google Scholar
[31] J.A.Golczewski: J. Ceram. Soc. Jap.114 (2006) 950.10.2109/jcersj.114.950Search in Google Scholar
[32] J.A.Golczewski: Int. J. Mater. Res.97 (2006) 729.10.3139/146.101295Search in Google Scholar
[33] H.Gleiter: Prog. Mater. Sci.33 (1989) 223.10.1016/0079-6425(89)90001-7Search in Google Scholar
[34] R.W.Siegle, in: F.E.Fujita (Ed.), Physics of New Materials, Springer Series in Material Sciences, Vol. 27, Springer Verlag, Berlin (1994) 65.Search in Google Scholar
© 2009, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Feature
- Materials constitution and computational thermodynamics in the context of 100 years of IJMR – Zeitschrift für Metallkunde
- Upgrading CALPHAD to microstructure simulation: the phase-field method
- Prediction, determination and validation of phase diagrams via the global study of energy landscapes
- Alloy development using modern tools
- Phase equilibria and thermal analysis in the Fe–Mn–Ni system
- Integrated approach to thermodynamics, phase relations, liquid densities and solidification microstructures in the Al–Bi–Cu system
- Formation of clathrates Ba–M–Ge(M = Mn, Fe, Co)
- New paradigm of a metastable phase diagram presenting structural transformations induced by annealing of Si–C–N amorphous ceramics derived from polymer precursors
- Basic
- Thermodynamic assessment of the Ce–Si, Y–Si, Mg–Ce–Si and Mg–Y–Si systems
- Thermodynamic re-assessment of the Ti–Al–Nb system
- Effect of varying oxygen partial pressure on the properties of reactively evaporated zinc aluminate thin films
- Applied
- Matrix induced synthesis of Y3Al5O12: Ce phosphor through the Pechini method
- Microstructure and room temperature compressive properties of holmium doped DS NiAl-Cr(Mo)-Hf eutectic alloy
- Evaporation mechanism of aluminum during electron beam cold hearth melting of Ti64 alloy
- 560°C isothermal section of the Zn–Fe–Ni–Si quaternary system at the zinc-rich corner
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Feature
- Materials constitution and computational thermodynamics in the context of 100 years of IJMR – Zeitschrift für Metallkunde
- Upgrading CALPHAD to microstructure simulation: the phase-field method
- Prediction, determination and validation of phase diagrams via the global study of energy landscapes
- Alloy development using modern tools
- Phase equilibria and thermal analysis in the Fe–Mn–Ni system
- Integrated approach to thermodynamics, phase relations, liquid densities and solidification microstructures in the Al–Bi–Cu system
- Formation of clathrates Ba–M–Ge(M = Mn, Fe, Co)
- New paradigm of a metastable phase diagram presenting structural transformations induced by annealing of Si–C–N amorphous ceramics derived from polymer precursors
- Basic
- Thermodynamic assessment of the Ce–Si, Y–Si, Mg–Ce–Si and Mg–Y–Si systems
- Thermodynamic re-assessment of the Ti–Al–Nb system
- Effect of varying oxygen partial pressure on the properties of reactively evaporated zinc aluminate thin films
- Applied
- Matrix induced synthesis of Y3Al5O12: Ce phosphor through the Pechini method
- Microstructure and room temperature compressive properties of holmium doped DS NiAl-Cr(Mo)-Hf eutectic alloy
- Evaporation mechanism of aluminum during electron beam cold hearth melting of Ti64 alloy
- 560°C isothermal section of the Zn–Fe–Ni–Si quaternary system at the zinc-rich corner
- DGM News
- Personal