Startseite Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6

Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth
  • Anja Dehler , Stefan Knirsch , Vivek Srivastava , Holger Saage und Martin Heilmaier
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Mechanical properties of a T6-AlSi6Cu4 cylinder-head alloy are investigated at 4 stress levels up to 545 K through tensile and compressive test to assess creep damage. The effect of over-ageing for 200 h at comparable temperatures was studied through RT hardness tests. Creep behaviour was characterised by a minimum creep rate and an extended steady state was not observed. No threshold stresses were apparent from minimum creep rate vs. stress plots at any of the temperatures studied here. Apparent stress exponents were both temperature and stress dependent and the apparent creep activation energy was 2–3 times the lattice selfdiffusion activation energy for aluminium. The Norton plot was best described by an exponential relation. The total strain to failure exhibited a maximum for a particular applied stress and decreases for both higher and lower applied stress. Creep life is well described by the Monkman– Grant relation at the highest temperature, but exhibits deviations from the idealised behaviour at the lower test temperatures.


* Correspondence address, Prof. Martin Heilmaier, Otto-von-Guericke-University Magdeburg, Institute for Materials & Joining Technology, P.O. Box 4120, D-39016 Magdeburg, Germany, Tel.: +49 391 6714 541, Fax: +49 391 6714 569. E-mail:

Refrences

[1] J.Hirsch: Mater. Forum28 (2004) 15.10.1016/S1051-0443(04)70154-2Suche in Google Scholar

[2] A.Wilm: Metallurgie8 (1911) 225.Suche in Google Scholar

[3] K.Matsuda, Y.Uetani, T.Sato, S.Ikeno: Metall. Mater. Trans.A32 (2001) 1293.10.1007/s11661-001-0219-2Suche in Google Scholar

[4] M.Murayama, K.Hono, W.F.Miao, D.E.Laughlin: Metall. Mater. Trans.A32 (2001) 239.10.1007/s11661-001-0254-zSuche in Google Scholar

[5] M.Zeren: J. Mater. Processing Tech.169 (2005) 292.10.1016/j.jmatprotec.2005.03.009Suche in Google Scholar

[6] Y.J.Li, S.Brusethaug, A.Olsen: TMS Letters2 (2005) 45.Suche in Google Scholar

[7] Y.J.Li, S.Brusethaug, A.Olsen: Scripta Mater.54 (2006) 99.10.1016/j.scriptamat.2005.08.044Suche in Google Scholar

[8] G.Wang, Q.Sun, L.Feng, L.Hui, C.Jing: Mater. Design (2006) in press.Suche in Google Scholar

[9] A.Deschamps, D.Solas, Y.Brechet, in: Y. Brechet (Ed.), Microstructure, Mechanical Properties and Processes, Proceedings of Euromat 99, Vol. 3, Wiley-VCH, Weinheim (2000) 121.Suche in Google Scholar

[10] H.R.Shercliff, M.F.Ashby: Acta Metall. Mater.38 (1990) 1789.10.1016/0956-7151(90)90291-NSuche in Google Scholar

[11] C.A.Cloutier, P.M.Reeber–Schmanski, J.W.Jones, J.E.Ellison, in: S.K.Das (Ed), Automotive Alloys 1999, TMS, Warrendale (2000) 153.Suche in Google Scholar

[12] S.Esmaeili, D.J.Lloyd, W.J.Poole: Acta Mater.51 (2003) 2243.10.1016/S1359-6454(03)00028-4Suche in Google Scholar

[13] S.C.Weakley–Bollin, W.Donlon, C.Wolverton, J.W.Jones, J. E.Allison: Metall. Mater. Trans.A35 (2004) 2407.10.1007/s11661-006-0221-9Suche in Google Scholar

[14] P.Ouellet, F.H.Samuel: J. Mater. Sci.34 (1999) 4671.10.1023/A:1004645928886Suche in Google Scholar

[15] M.Spoth: Diplomarbeit, Fachhochschule Esslingen (2004).Suche in Google Scholar

[16] J.Cadek: Creep in Metallic Materials, Elsevier, Amsterdam (1988).Suche in Google Scholar

[17] M.E.Kassner, M.T.Pérez–Prado: Fundamentals of Creep in Metals and Alloys, Elsevier, Amsterdam (2004).Suche in Google Scholar

[18] B.Reppich, in: R.W.Cahn, P.Haasen, E.J.Kramer (Eds.), Material Science and Technology, Vol. 6, VCH, Weinheim (1993) 311.Suche in Google Scholar

[19] J.Rösler, E.Arzt: Acta Metall.36 (1988) 1053.10.1016/0001-6160(88)90159-9Suche in Google Scholar

[20] E.Arzt, G.Dehm, P.Gumbsch, O.Kraft, D.Weiss: Prog. Mater. Sci46 (2001) 283.10.1016/S0079-6425(00)00015-3Suche in Google Scholar

[21] D.A.Dehler: Diplomarbeit, Otto-von-Guericke Universität, Magdeburg (2006).Suche in Google Scholar

[22] S.Spigarelli: Mater. Sci. Eng. A337 (2002) 306.10.1016/S0921-5093(02)00045-XSuche in Google Scholar

[23] T.Nakajima, M.Takeda, T.Endo: Mater. Sci. Eng.A387–389 (2004) 670.Suche in Google Scholar

[24] H.J.Frost, M.F.Ashby: Deformation mechanism maps, Pergamon Press, Oxford (1982).Suche in Google Scholar

[25] R.Lagneborg, B.Bergman: Met. Sci.10 (1976) 20.10.1179/030634576790431462Suche in Google Scholar

[26] J.Čadek, K.Kucharova, S.J.Zhu: Mater. Sci. Eng. A281 (2000) 162.Suche in Google Scholar

[27] F.C.Monkman, N.J.Grant: Proc. ASTM56 (1956) 593.Suche in Google Scholar

[28] M.Heilmaier, B.Reppich: Metall. Mater. Trans.A27 (1996) 3861.10.1007/BF02595635Suche in Google Scholar

[29] F.Dobes, K.Milicka, Met. Sci.10 (1976) 382.10.1080/03063453.1976.11683560Suche in Google Scholar

[30] R.Wagner, R.Kampmann, in: R.W.Cahn, P.Haasen, E.J.Kramer (Eds.), Material Science and Technology, Vol. 5, VCH, Weinheim (1991) 213.Suche in Google Scholar

[31] G.Liu, G.J.Zhang, X.D.Ding, J.Sun, K.H.Chen: Mater. Sci. Eng. A344 (2003) 113.10.1016/S0921-5093(02)00398-2Suche in Google Scholar

[32] A.W.Zhu, E.A.Starke, Jr.: Acta Mater.47 (1999) 3263.10.1016/S1359-6454(99)00179-2Suche in Google Scholar

[33] S.Hu: Ph.D. Thesis, Pennsylvania State University, 2004.Suche in Google Scholar

[34] P.E.J.Rivera Diaz del Castillo, P.Reischig, S.van der Zwaag: Scripta Mater.52 (2005) 705.10.1016/j.scriptamat.2004.12.025Suche in Google Scholar

[35] D.Janoff, M.E.Fine: Mater. Sci. Eng.64 (1984) 67.10.1016/0025-5416(84)90074-0Suche in Google Scholar

[36] W.Blum, B.Reppich, in: B.Wilshire, R.W.Evans (Eds.), Progress in Creep and Fracture, Vol. 3, Pineridge Press, Swansea (1985) 83.Suche in Google Scholar

[37] C.K.L.Davies, A.G.Older, R.N.Stevens, in: B. Wilshire, & rum;R.W. Evans (Eds.), Proceedings. 4th International Conference on Creep and Fracture of Engineering Materials and Structures, The Institute of Metals, London (1990) 97.Suche in Google Scholar

[38] B.Reppich, H.Bügler, in: B. Wilshire, D.R.J. Owen (Eds.), Proc. 2nd Int. Conf. on Creep and Fracture of Engg. Mater. And Structures, Pineridge Press, Swansea (1984) 299.Suche in Google Scholar

[39] R.N.Lumley, A.J.Morton, I.J.Polmear: Acta Metall50 (2002) 3597.Suche in Google Scholar

Received: 2006-4-28
Accepted: 2006-9-1
Published Online: 2013-05-31
Published in Print: 2006-12-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Basic
  4. Microcracks in superalloys: From local in-situ measurements to lifetime prediction
  5. Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
  6. Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
  7. The nature of the TRIP-effect in metastable austenitic steels
  8. Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
  9. Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
  10. On the Hall–Petch relation between flow stress and grain size
  11. Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
  12. Applied
  13. Strengthening of silicon nitride ceramics by shot peening
  14. Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
  15. New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
  16. Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
  17. Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
  18. Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
  19. Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
  20. Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
  21. DGM News
  22. DGM News
Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101401/html?lang=de
Button zum nach oben scrollen