Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
-
Zaklina Burghard
Abstract
Nanocomposites made of polymer-derived Si–C–N ceramic reinforced by single-wall carbon nanotubes (SWCNTs) were prepared for the first time. The synthesis procedure involved ultrasonic dispersion of the nanotubes into a liquid polysilazane precursor polymer, followed by cross-linking and thermolysis. With the aid of nanoindentation testing, dependence of the mechanical properties of the composites on the concentration and agglomeration state of SWCNTs, was studied. The nanotube-filled composites showed improved mechanical performance, as reflected by an increase in Young's modulus which was found to be correlated with the microstructure of the composites, in particular the degree of dispersion of the nanotubes inside the matrix, whereas the hardness is hardly affected.
Refrences
[1] M.M.J.Treacy, T.W.Ebbesen, J.M.Gibson: Nature381 (1996) 678.10.1038/381678a0Search in Google Scholar
[2] E.W.Wong, P.E.Sheehan, C.M.Lieber: Science277 (1997) 1971.10.1126/science.277.5334.1971Search in Google Scholar
[3] A.Krishnan, E.Dujardin, T.W.Ebbesen, P.N.Yianilos, M.M.J.Treacy: Phys. Rev.B58 (1998) 14013.Search in Google Scholar
[4] M.F.Yu, B.S.Files, S.Arepalli, R.S.Ruoff: Phys. Rev. Lett.84 (2000) 5552.10.1103/PhysRevLett.84.5552Search in Google Scholar
[5] K.Anazawa, K.Shimotani, C.Manabe, H.Wanatabe, M.Shimizu: App. Phys. Lett.81 (2002) 739.10.1063/1.1491302Search in Google Scholar
[6] S.Berber, Y.K.Kwon, D.Tomanek: Phys. Rev. Lett.84 (2000) 4613.10.1103/PhysRevLett.84.4613Search in Google Scholar
[7] J.Sun, L.Gao, W.Li: Chem. Mater.14 (2002) 5169.10.1021/cm020736qSearch in Google Scholar
[8] T.Seeger, T.Kohler, T.Frauenheim, N.Grobert, M.Ruhle, M.Terrones, G.Seifert: Chem. Commun. (2002) 34.10.1039/b109441fSearch in Google Scholar
[9] P.Vincent, A.Brioude, C.Journet, S.Rabaste, S.T.Purcell, J.Le Brusq, J.C.Plenet: J. Non-Crystalline Solids311 (2002) 130.10.1016/S0022-3093(02)01371-6Search in Google Scholar
[10] C.Laurent, A.Peigney, O.Dumortier, A.Rousset: J. Euro. Ceram. Soc.18 (1998) 2005.10.1016/S0955-2219(98)00142-3Search in Google Scholar
[11] A.Peignei: Nature Materials2 (2003) 15.10.1038/nmat794Search in Google Scholar PubMed
[12] G.D.Zhan, J.D.Kuntz, J.L.Wan, A.K.Mukherjee: Nature Materials2 (2003) 38.10.1038/nmat793Search in Google Scholar
[13] R.Z.Ma, J.Wu, B.Q.Wei, J.Liang, D.H.Wu: J. Mater. Sci.33 (1998) 5243.10.1023/A:1004492106337Search in Google Scholar
[14] L.N.An, W.X.Xu, S.Rajagopalan, C.M.Wang, H.Wang, Y.Fan, L.G.Zhang, D.P.Jiang, J.Kapat, L.Chow, B.H.Guo, J.Liang, R.Vaidyanathan: Adv. Mater.16 (2004) 2036.10.1002/adma.200306241Search in Google Scholar
[15] Y.Katsuda, P.Gerstel, J.Narayanan, J.Bill, F.Aldinger: J. Euro. Ceram. Soc. in print.Search in Google Scholar
[16] J.Bill, F.Aldinger: Adv. Mater.7 (1995) 775.10.1002/adma.19950070903Search in Google Scholar
[17] G.Thurn, J.Canel, J.Bill, F.Aldinger: J. Euro. Ceram. Soc.19 (1999) 2317.10.1016/S0955-2219(99)00093-XSearch in Google Scholar
[18] R.Raj, L.An, S.Shah: J. Am. Ceram. Soc.84 (2001) 1803.10.1111/j.1151-2916.2001.tb00918.xSearch in Google Scholar
[19] J.Lu, W.Xu, J.Han: Int. J. High speed Electron. Sys.9 (1998) 101.10.1142/S0129156498000063Search in Google Scholar
[20] M.F.Doerner, W.D.Nix: J. Mater. Res.1 (1986) 601.10.1557/JMR.1986.0601Search in Google Scholar
[21] W.C.Oliver, G.M.Pharr: J. Mater. Res.7 (1992) 1564.10.1557/JMR.1992.1564Search in Google Scholar
[22] B.Bhushan, X.Li: Int. Mater. Rev.48 (2003) 125.10.1179/095066003225010227Search in Google Scholar
[23] Z.Burghard: PhD thesis, University of Stuttgart, Stuttgart (2004).Search in Google Scholar
[24] X.Y.Gong, J.Liu, S.Baskaran, R.D.Voise, J.S.Young: Chem. Mater.12 (2000) 1049.10.1021/cm9906396Search in Google Scholar
[25] X.T.Wang, N.P.Padture, H.Tanaka: Nature3 (2004), 539.10.1038/nmat1161Search in Google Scholar
[26] W.D.Nix: Mater. Sci. Eng. A237 (1997) 37.10.1016/S0921-5093(97)00176-7Search in Google Scholar
[27] M.Burghard: Surface Science Reports58 (2005) 1.10.1002/smll.200500257Search in Google Scholar
[28] H.Miyagawa, A.K.Mohanty, L.T.Drzal, M.Misra: Nanotechnology16 (2005) 118.10.1088/0957-4484/16/1/024Search in Google Scholar
[29] F.H.Gojny, J.Nastalczyk, Z.Roslaniec, K.Schulte: Chem. Phys. Lett.370 (2003) 820.10.1016/S0009-2614(03)00187-8Search in Google Scholar
© 2006, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Basic
- Microcracks in superalloys: From local in-situ measurements to lifetime prediction
- Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
- Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
- The nature of the TRIP-effect in metastable austenitic steels
- Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
- Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
- On the Hall–Petch relation between flow stress and grain size
- Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
- Applied
- Strengthening of silicon nitride ceramics by shot peening
- Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
- New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
- Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
- Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
- Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
- Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
- Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Basic
- Microcracks in superalloys: From local in-situ measurements to lifetime prediction
- Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
- Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
- The nature of the TRIP-effect in metastable austenitic steels
- Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
- Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
- On the Hall–Petch relation between flow stress and grain size
- Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
- Applied
- Strengthening of silicon nitride ceramics by shot peening
- Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
- New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
- Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
- Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
- Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
- Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
- Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
- DGM News
- DGM News