Startseite Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques

Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth
  • G. Stelzer , A. Klavzar , M. Bos und R. Renz
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Processing of long-fibre reinforced thermoplastics with a discontinuous reinforcement of long glass fibres, especially by direct-processing, leads to inhomogeneous and anisotropic properties. Because of this, locally resolved characterisation of the material properties is necessary. Non-contact testing methods are required to derive these material properties. Locally resolving hysteresis measurement, full-field strain measurement techniques and thermoelastic stress analysis (TSA) are applied to an incremental step test and to a fatigue test. It is shown that there is good correspondence between the local TSA-signals and the locally measured values of the major strain. This correlation is valid not only for lower linear elastic load levels, but also up to nonlinear-viscoelastic levels. A model is presented to describe the correlation between the TSA-signal and the measured major strain.


* Correspondence address, Prof. Dr.-Ing. Rainer Renz, Gottlieb-Daimler-Straße, Gebäude 44/216, D-67663 Kaiserslautern, Germany, Tel.: +496312053960, Fax: +496312053963. E-mail:

Refrences

[1] R.BrüsselR.Kühfusz: 1. Int. AVK-TV Tagung, 1998.Suche in Google Scholar

[2] R.Renz; G.Stelzer, R.Szymikowski: 7. International AVK-TV Conference, 28–29 September 2004, Baden-Baden, Proceedings of the Conference.Suche in Google Scholar

[3] W.Thomson: Mathematical and Physical Papers, Vol. 1, (Cambridge University Press, London) 1882.Suche in Google Scholar

[4] J.MDulieu-BartonP.Stanley: Applications of thermoelastic stress analysis to composite materials, Strain (May 1999) 41.10.1111/j.1475-1305.1999.tb01124.xSuche in Google Scholar

[5] S.Barone, E.A.Patterson: Journal of Strain Analysis33 (3) (1998) 223.10.1243/0309324981512940Suche in Google Scholar

[6] P.R.Cunningham, J.M.Dulieu-Barton, A.G.Dutton, R.A.Shenoi: Key Engineering Materials221–222 (2002) 325.Suche in Google Scholar

[7] R.Renz: Zum zügigen und zyklischen Verformungsverhalten polymerer Hartschaumstoffe. Dissertation Universität Karlsruhe (1977).Suche in Google Scholar

[8] G.W.Ehrenstein; Tagung am Lehrstuhl für Kunststofftechnik der Universität Erlangen, 8. Juli (1993), Tagungsband.Suche in Google Scholar

[9] H.P.Kugler, H.Drude, K.U.Senftleben: Materialprüfung40 (1998).10.1515/mt-1998-400603Suche in Google Scholar

[10] K.Bartnig, H.P.Kugler, W.Grellmann: DVM-Tagung “Werkstoffprüfung“, Bad Nauheim (1991) 483.Suche in Google Scholar

[11] O.Reese: Ortsaufgelöste Hysteresismessung. Dissertation Universität Kaiserslautern (2000).Suche in Google Scholar

[12] R.Renz, O.Reese, F.Hennes: 3rd International Conference on Mechanics of Time Dependent Materials, Erlangen, September (2000).Suche in Google Scholar

[13] N.Harwood, W.M.Cummings: IOP Publishing Ltd., Bristo (1991).Suche in Google Scholar

[14] D.Zhang, B.I.Sandor: Fatigue and fracture of engineering materials and structures. Vol.13 (1990) 497.Suche in Google Scholar

[15] G.Horn, T.H.Mackin, in: Proceedings of SPIE Vol. 3994 (2000) 138.10.1117/12.385020Suche in Google Scholar

[16] R.Renz: 12th Int. Conf. on Experimental Mechanics, Polytecnico di Bari, Italy (2004).Suche in Google Scholar

[17] D.Winter: Optische Verschiebungsmessung nach dem Objektrasterprinzip mit Hilfe eines flächenorientierten Ansatzes. Dissertation, TU Braunschweig (1993).Suche in Google Scholar

[18] H.Friebe, K.Galanulis, O.Erne, E.Müller: FLC-Zurich 06, ETH Zurich, Switzerland, March 15th–16th (2006).Suche in Google Scholar

[19] J.A.Leendertz: J. Phys. E.3 (1970) 214.10.1088/0022-3735/3/3/312Suche in Google Scholar

[20] G.Cloud; Cambridge University Press (1994).Suche in Google Scholar

[21] G.Pitarresi, E.A.Patterson: Strain Analysis, Vol. 38 No. 5 (2003).10.1243/03093240360713469Suche in Google Scholar

[22] M.A.Biot: J. Appl. Physics27 (3) (1956) 240.10.1063/1.1722351Suche in Google Scholar

Received: 2006-6-1
Accepted: 2006-9-6
Published Online: 2013-05-31
Published in Print: 2006-12-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Basic
  4. Microcracks in superalloys: From local in-situ measurements to lifetime prediction
  5. Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
  6. Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
  7. The nature of the TRIP-effect in metastable austenitic steels
  8. Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
  9. Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
  10. On the Hall–Petch relation between flow stress and grain size
  11. Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
  12. Applied
  13. Strengthening of silicon nitride ceramics by shot peening
  14. Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
  15. New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
  16. Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
  17. Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
  18. Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
  19. Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
  20. Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
  21. DGM News
  22. DGM News
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101404/html
Button zum nach oben scrollen