Startseite On the Hall–Petch relation between flow stress and grain size
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the Hall–Petch relation between flow stress and grain size

Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth
  • W. Blum , Y. J. Li , J. Chen , X. H. Zeng und K. Lu
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Data of flow stresses σ for pure Cu with ultrafine grains with grain size d ≍ 0:35 μm produced by severe plastic deformation and grains of conventional size obtained in the range of homologous temperatures Thom from 0.22 (room temperature) to 0.33 are compared to data for hardnesses H for Cu of various grain structures from single crystalline to d = 0:01 μm measured by nanoindentation at room temperature. The two sets of data appear to be consistent when σ ≍ H=3. At room temperature the Hall – Petch relation holds, i. e., the flow stress increases monotonically with decreasing grain size by Δ σ ∝ d−0.5. At elevated Thom the saturated flow stress decreases when the grains become ultrafine. The transition from hardening to softening by grain boundaries in the saturation stage is discussed on the basis of a simple statistical dislocation model considering the influence of grain boundaries on the balance between generation and annihilation of dislocations.


* Correspondence address, Prof. Dr.-Ing. Wolfgang Blum, Inst. f. Werkstoffwissenschaften LS1, University of Erlangen –Nürnberg, Martensstr. 5, D-91058 Erlangen, Germany, Tel.: +49 9131 852 7506, Fax: +49 9131 8527504. E-mail:

Refrences

[1] N.Hansen: Scripta Mater.51 (2004) 801.10.1016/j.scriptamat.2004.06.002Suche in Google Scholar

[2] M.A.Meyers, A.Mishra, D.J.Benson: Prog. Mater. Sci.51 (2006) 427.10.1016/j.pmatsci.2005.08.003Suche in Google Scholar

[3] J.Chen, L.Lu, K.Lu: Scripta Mater. (54) (2006) 1913.10.1016/j.scriptamat.2006.02.022Suche in Google Scholar

[4] T.G.Langdon: Z. Metallkd. (96) (2005) 522.10.3139/146.101066Suche in Google Scholar

[5] S.Cheng, E.Ma, Y.M.Wang, L.J.Kecskes, K.M.Youssef, C. C.Koch, U.P.Trociewitze, K.Han: Acta Mater.53 (2005) 1521.10.1016/j.actamat.2004.12.005Suche in Google Scholar

[6] Y.J.Li, W.Blum, F.Breutinger: Mater. Sci. Eng.A387 (2004) 585.Suche in Google Scholar

[7] Y.J.Li, X.H.Zeng, W.Blum: Acta Mater.52 (2004) 5009.10.1016/j.actamat.2004.07.003Suche in Google Scholar

[8] S.V.Raj, G.Pharr: Mater. Sci. Eng.81 (1986) 217.10.1016/0025-5416(86)90265-XSuche in Google Scholar

[9] W.Blum, in: H.Mughrabi (Ed.), Materials Science and Technology, Vol. 6, VCH Verlagsgesellschaft, Weinheim (1993) 359.Suche in Google Scholar

[10] X.Molodova, S.Bhaumik, M.Winning, G.Gottstein: Mater. Sci. Forum503–504 (2006) 469.10.4028/www.scientific.net/MSF.503-504.469Suche in Google Scholar

[11] Y.J.Li, R.Kapoor, J.T.Wang, W.Blum: poster at TMS annual meeting, San Antonio, USA (2006).Suche in Google Scholar

[12] R.Kapoor, Y.J.Li, J.T.Wang, W.Blum: Scripta mater.54 (2006) 1803.10.1016/j.scriptamat.2006.01.032Suche in Google Scholar

[13] W.Blum, P.Eisenlohr, F.Breutinger: Metall. Trans.A33 (2002) 291.Suche in Google Scholar

[14] Y.J.Li: PhD thesis, University of Erlangen–Nürnberg, Cuvillier Verlag, Göttingen (2006).Suche in Google Scholar

[15] U.F.Kocks, H.Mecking: Prog. Mater. Sci.48 (2003) 171.10.1016/S0079-6425(02)00003-8Suche in Google Scholar

[16] R.S.Kottada, A.H.Chokshi: Scripta mater.53 (2005) 887.10.1016/j.scriptamat.2005.06.035Suche in Google Scholar

[17] W.Blum, P.Eisenlohr, V.Sklenicvka, in: M.Zehetbauer, Y.T.Zhu (Eds.), Bulk Nanostructured Materials, Wiley-VCH (2006).Suche in Google Scholar

[18] Y.J.Li, W.Blum: phys. stat. sol. (a)202 (2005) R119.10.1002/pssa.200521160Suche in Google Scholar

[19] X.H.Zeng: PhD thesis, University of Erlangen–Nürnberg, (2006).Suche in Google Scholar

[20] X.H.Zeng, P.Eisenlohr, W.Blum: In ICSMA 14, Xi'an, China, 2006, to be published in Mater. Sci. Eng. A.Suche in Google Scholar

[21] H.J.Frost, M.F.Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford (1982).Suche in Google Scholar

Received: 2006-4-20
Accepted: 2006-8-11
Published Online: 2013-05-31
Published in Print: 2006-12-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Basic
  4. Microcracks in superalloys: From local in-situ measurements to lifetime prediction
  5. Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
  6. Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
  7. The nature of the TRIP-effect in metastable austenitic steels
  8. Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
  9. Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
  10. On the Hall–Petch relation between flow stress and grain size
  11. Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
  12. Applied
  13. Strengthening of silicon nitride ceramics by shot peening
  14. Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
  15. New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
  16. Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
  17. Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
  18. Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
  19. Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
  20. Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
  21. DGM News
  22. DGM News
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101398/html
Button zum nach oben scrollen