The nature of the TRIP-effect in metastable austenitic steels
-
Heinrich Oettel
and Ulrich Martin
Abstract
The TRIP-effect in metastable austenitic steels is caused by a moderate local martensitic transformation, influencing both the strain hardening and the damage behaviour. The main conditions of a marked TRIP-effect are a low flow stress in the undeformed state, a high strain hardening exponent, a continuous martensitic transformation up to about 20% and a high resistance to damage (e.g. crack formation and propagation). The martensite transformation starts in glide or shear bands and their intersections even at temperatures clearly above the conventional Md-temperatures, reducing the local stress concentrations and so preventing the onset of damage. Furthermore, high martensite content can be detected along the fracture path impeding the crack propagation by the transformation. To demonstrate the influence of damage on the TRIP-effect the deviations from the so-called Considere-criterion for maximum uniform elongation can be used.
Refrences
[1] G.Wassermann: Arch. Eisenhüttenw.10 (1937) 321.10.1002/srin.193700538Search in Google Scholar
[2] V.F.Zackay, E.R.Parker, D.Fahr, R.Bush: Trans. ASM60 (1967) 252.Search in Google Scholar
[3] I.Tamura: Metal Science16 (1982) 245.10.1179/030634582790427316Search in Google Scholar
[4] M.Cherakoui, M.Berveiller: Zeitschrift für Angew. Math. Mech.80 (2000) 219.Search in Google Scholar
[5] R.G.Stringfellow, D.M.Parks, G.B.Olson: Acta Metall. Mater.40 (1992) 1703.Search in Google Scholar
[6] H.Becker, H.Brandis, W.Küppers: Thyssen Edelstahl Technische Berichte, 12. Band, Heft 1 (1986) 35.Search in Google Scholar
[7] H.Oettel, U.Martin, M.Onyuna, A.Weiß: Adv. Eng. Mater.6 (2004) 529.Search in Google Scholar
[8] F.D.Fischer, Q.P.Sun, K.Tanaka: Appl. Mech. Rev.49 (1996) 317.Search in Google Scholar
[9] F.D.Fischer, G.Reisner, E.Werner, K.Tanaka, G.Cailletaud, T.Antretter: Int. J. Plasticity16 (2000) 723.Search in Google Scholar
[10] N.Tsuchida, Y.Tomota: Mat. Sci. Eng.A285 (2000) 345.Search in Google Scholar
[11] S.Papaefthymiou, W.Bleck, U.Prahl, C.Acht, J.Sietsma, S.van der Zwaag: Materials Sci. Forum Metals426–432 (2003) 1355.Search in Google Scholar
[12] P.Jacques, Q.Furnemont, T.Pardoen, F.Delannay: Acta Mater.49 (2001) 139.Search in Google Scholar
[13] W.Bleck: Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, Gent, (2002) 13.Search in Google Scholar
[14] G. B.Olson, M.Cohen, Metallurgical Transactions A6 (1975) 791.10.1007/BF02672301Search in Google Scholar
[15] A.Weiß, P.R.Scheller, H.Gutte: Steel Grips1 (2003) 4, 284.Search in Google Scholar
[16] V.Schoß: Dissertation, TU Bergakademie Freiberg, 2000.Search in Google Scholar
[17] Y.Nakasone, Y.Iwasaki, T.Shimizu, S.Kasumi: Engin. Materials243–244 (2003) 327.Search in Google Scholar
[18] D.Barenbrock: VDI Fortschrittsberichte, Reihe5, Nr. 659 (2002).Search in Google Scholar
[19] W.S.Kranz: Dissertation RWTH Aachen (1999).Search in Google Scholar
[20] T.Nebel, U.Martin, D.Eifler: HTM56 (2001) 314.Search in Google Scholar
[21] G.W.Greenwood, R.H.Johnson: Proc. Roy. Soc.A283 (1965) 403.Search in Google Scholar
[22] F.GüntherK.Höhne, H.Oettel, M.Urban: VII. Conf. Appl. Cryst. Kozubnik (1974) 118.Search in Google Scholar
[23] H.Schumann: Neue Hütte17 (1972) 203.Search in Google Scholar
[24] O.Bouaziz, N.Guelton: Mater. Sci. Eng.A319–321 (2001) 246.Search in Google Scholar
[25] D.P.Koistinen, R.E.Marburger: Acta Met.7 (1959) 59.Search in Google Scholar
[26] G.Besserdich: Dissertation Universität Karlsruhe (TH), 1993Search in Google Scholar
[27] K.Tanaka: Comp. Plasticity7 (1991) 43.10.1002/scj.4690210705Search in Google Scholar
[28] D.C.Ludwigson, J.A.Berger: J. Iron Steel Inst.207 (1969) 63.Search in Google Scholar
[29] M.Glavatskikh, H.Oettel, U.Martin, S.Nikulin: Mat.-wiss.u. Werkstofftech. (2006) in press.Search in Google Scholar
[30] L.M.Kachanov: Introduction to Continuum Damage Mechanics; Kluewer Aress 1986; in: H.Altenbach (Ed.), Werkstoffmechanik, Dt. Verlag für Grundstoffindustrie, Leipzig (1993).Search in Google Scholar
[31] W.Schmidt, W.Gebel: Draht41 (1990) 5, 579.Search in Google Scholar
[32] A.Behrens, H.Just: Steel Res. Int.76 (2005) 210.Search in Google Scholar
© 2006, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Basic
- Microcracks in superalloys: From local in-situ measurements to lifetime prediction
- Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
- Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
- The nature of the TRIP-effect in metastable austenitic steels
- Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
- Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
- On the Hall–Petch relation between flow stress and grain size
- Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
- Applied
- Strengthening of silicon nitride ceramics by shot peening
- Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
- New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
- Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
- Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
- Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
- Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
- Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Basic
- Microcracks in superalloys: From local in-situ measurements to lifetime prediction
- Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
- Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
- The nature of the TRIP-effect in metastable austenitic steels
- Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
- Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
- On the Hall–Petch relation between flow stress and grain size
- Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
- Applied
- Strengthening of silicon nitride ceramics by shot peening
- Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
- New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
- Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
- Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
- Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
- Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
- Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
- DGM News
- DGM News