Home The nature of the TRIP-effect in metastable austenitic steels
Article
Licensed
Unlicensed Requires Authentication

The nature of the TRIP-effect in metastable austenitic steels

Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth
  • Heinrich Oettel and Ulrich Martin
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

The TRIP-effect in metastable austenitic steels is caused by a moderate local martensitic transformation, influencing both the strain hardening and the damage behaviour. The main conditions of a marked TRIP-effect are a low flow stress in the undeformed state, a high strain hardening exponent, a continuous martensitic transformation up to about 20% and a high resistance to damage (e.g. crack formation and propagation). The martensite transformation starts in glide or shear bands and their intersections even at temperatures clearly above the conventional Md-temperatures, reducing the local stress concentrations and so preventing the onset of damage. Furthermore, high martensite content can be detected along the fracture path impeding the crack propagation by the transformation. To demonstrate the influence of damage on the TRIP-effect the deviations from the so-called Considere-criterion for maximum uniform elongation can be used.


* Correspondence address, Prof. Dr.-Ing. Heinrich Oettel, Institut für Werkstoffwissenschaft der TU Bergakademie Freiberg, Gustav-Zeunerstr. 5, D-09596 Freiberg, Germany, Tel.: +493731392617, Fax: +493731393657. E-mail:

Refrences

[1] G.Wassermann: Arch. Eisenhüttenw.10 (1937) 321.10.1002/srin.193700538Search in Google Scholar

[2] V.F.Zackay, E.R.Parker, D.Fahr, R.Bush: Trans. ASM60 (1967) 252.Search in Google Scholar

[3] I.Tamura: Metal Science16 (1982) 245.10.1179/030634582790427316Search in Google Scholar

[4] M.Cherakoui, M.Berveiller: Zeitschrift für Angew. Math. Mech.80 (2000) 219.Search in Google Scholar

[5] R.G.Stringfellow, D.M.Parks, G.B.Olson: Acta Metall. Mater.40 (1992) 1703.Search in Google Scholar

[6] H.Becker, H.Brandis, W.Küppers: Thyssen Edelstahl Technische Berichte, 12. Band, Heft 1 (1986) 35.Search in Google Scholar

[7] H.Oettel, U.Martin, M.Onyuna, A.Weiß: Adv. Eng. Mater.6 (2004) 529.Search in Google Scholar

[8] F.D.Fischer, Q.P.Sun, K.Tanaka: Appl. Mech. Rev.49 (1996) 317.Search in Google Scholar

[9] F.D.Fischer, G.Reisner, E.Werner, K.Tanaka, G.Cailletaud, T.Antretter: Int. J. Plasticity16 (2000) 723.Search in Google Scholar

[10] N.Tsuchida, Y.Tomota: Mat. Sci. Eng.A285 (2000) 345.Search in Google Scholar

[11] S.Papaefthymiou, W.Bleck, U.Prahl, C.Acht, J.Sietsma, S.van der Zwaag: Materials Sci. Forum Metals426–432 (2003) 1355.Search in Google Scholar

[12] P.Jacques, Q.Furnemont, T.Pardoen, F.Delannay: Acta Mater.49 (2001) 139.Search in Google Scholar

[13] W.Bleck: Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, Gent, (2002) 13.Search in Google Scholar

[14] G. B.Olson, M.Cohen, Metallurgical Transactions A6 (1975) 791.10.1007/BF02672301Search in Google Scholar

[15] A.Weiß, P.R.Scheller, H.Gutte: Steel Grips1 (2003) 4, 284.Search in Google Scholar

[16] V.Schoß: Dissertation, TU Bergakademie Freiberg, 2000.Search in Google Scholar

[17] Y.Nakasone, Y.Iwasaki, T.Shimizu, S.Kasumi: Engin. Materials243–244 (2003) 327.Search in Google Scholar

[18] D.Barenbrock: VDI Fortschrittsberichte, Reihe5, Nr. 659 (2002).Search in Google Scholar

[19] W.S.Kranz: Dissertation RWTH Aachen (1999).Search in Google Scholar

[20] T.Nebel, U.Martin, D.Eifler: HTM56 (2001) 314.Search in Google Scholar

[21] G.W.Greenwood, R.H.Johnson: Proc. Roy. Soc.A283 (1965) 403.Search in Google Scholar

[22] F.GüntherK.Höhne, H.Oettel, M.Urban: VII. Conf. Appl. Cryst. Kozubnik (1974) 118.Search in Google Scholar

[23] H.Schumann: Neue Hütte17 (1972) 203.Search in Google Scholar

[24] O.Bouaziz, N.Guelton: Mater. Sci. Eng.A319–321 (2001) 246.Search in Google Scholar

[25] D.P.Koistinen, R.E.Marburger: Acta Met.7 (1959) 59.Search in Google Scholar

[26] G.Besserdich: Dissertation Universität Karlsruhe (TH), 1993Search in Google Scholar

[27] K.Tanaka: Comp. Plasticity7 (1991) 43.10.1002/scj.4690210705Search in Google Scholar

[28] D.C.Ludwigson, J.A.Berger: J. Iron Steel Inst.207 (1969) 63.Search in Google Scholar

[29] M.Glavatskikh, H.Oettel, U.Martin, S.Nikulin: Mat.-wiss.u. Werkstofftech. (2006) in press.Search in Google Scholar

[30] L.M.Kachanov: Introduction to Continuum Damage Mechanics; Kluewer Aress 1986; in: H.Altenbach (Ed.), Werkstoffmechanik, Dt. Verlag für Grundstoffindustrie, Leipzig (1993).Search in Google Scholar

[31] W.Schmidt, W.Gebel: Draht41 (1990) 5, 579.Search in Google Scholar

[32] A.Behrens, H.Just: Steel Res. Int.76 (2005) 210.Search in Google Scholar

Received: 2006-5-24
Accepted: 2006-9-11
Published Online: 2013-05-31
Published in Print: 2006-12-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Basic
  4. Microcracks in superalloys: From local in-situ measurements to lifetime prediction
  5. Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
  6. Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
  7. The nature of the TRIP-effect in metastable austenitic steels
  8. Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
  9. Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
  10. On the Hall–Petch relation between flow stress and grain size
  11. Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
  12. Applied
  13. Strengthening of silicon nitride ceramics by shot peening
  14. Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
  15. New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
  16. Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
  17. Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
  18. Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
  19. Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
  20. Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
  21. DGM News
  22. DGM News
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101395/html
Scroll to top button