Startseite Microcracks in superalloys: From local in-situ measurements to lifetime prediction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microcracks in superalloys: From local in-situ measurements to lifetime prediction

Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth
  • Michael Marx und Horst Vehoff
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The established K-concept with the Paris law as the central equation often used for life-time prediction and dimensioning does not fit with the micromechanical crack tip opening displacement (CTOD) concept. While the K-concept is based on continuum mechanics, the CTOD is influenced by the local microstructure. Consequently, the CTOD-concept is checked in situ in the scanning electron microscope and is found to be the appropriate micromechanical description of the crack propagation mechanism. However, it is shown that during low cycle fatigue of turbine materials, even under extreme conditions short cracks behave less harmfully than expected. Additionally a new technique of artificial crack initiation by operating with a focused ion beam is used to investigate special crack problems such as the interaction of cracks with microstructural barriers in detail, which was not previously possible in this systematic way.


* Correspondence address, Dr.-Ing. Michael Marx, Saarland University, Materials Science and Methods, Building D2.3, 66041 Saarbrücken, Germany, Tel.: +496815164, Fax: +496815015. E-mail:

Refrences

[1] S.Suresh: Fatigue of materials, Cambridge University Press, Cambridge (1998).10.1017/CBO9780511806575Suche in Google Scholar

[2] R.O.Ritchie, J.O.Peters: Mat. Trans.42 (2001) 58.Suche in Google Scholar

[3] A.J.McEvily: Engineering Failure Analysis11 (2004) 167.10.1016/j.engfailanal.2003.05.004Suche in Google Scholar

[4] T.Hanlon, E.D.Tabachnikova, S.Suresh: Int. J. Fatigue27 (2005) 1147.Suche in Google Scholar

[5] P.C.Paris, M.Gomez, W.E.Anderson: Trends in Engineering13 (1961) 9.Suche in Google Scholar

[6] P.Neumann: Acta Met.22 (1974) 1167.10.1016/0001-6160(74)90072-8Suche in Google Scholar

[7] H.Vehoff, P.Neumann: Acta Met.27 (1979) 915.Suche in Google Scholar

[8] K.J.Miller: Fatigue & Fract. Eng. Mater. Struct.5 (1982) 223.Suche in Google Scholar

[9] K.J.Miller: Fatigue & Fract. Eng. Mater. Struct.10 (1987) 93.Suche in Google Scholar

[10] H.Vehoff, P.Neumann: Steel Research63 (1992) 371.Suche in Google Scholar

[11] A.J.McEvily: Mater. Sci. Res. Inter.4 (1998) 3.Suche in Google Scholar

[12] P.Lukáš, L.Kunz: Int. J. Fatigue25 (2003) 855.Suche in Google Scholar

[13] B.A.Bilby, A.H.Cottrell, K.H.Swinden: Proc. R. Soc.A272 (1963) 304.Suche in Google Scholar

[14] J.Weertman: Int. J. Fracture2 (1966) 460.10.1007/BF00183823Suche in Google Scholar

[15] K.Tanaka, Y.Akinawa, Y.Nakai, R.P.Wei: Eng. Fracture Mech.24 (1986) 803.Suche in Google Scholar

[16] A.Navarro, E.R.De Los Rios: Phil. Mag. A57 (1988) 15.Suche in Google Scholar

[17] A.Navarro, E.R.De Los Rios: Fatigue & Fract. Eng. Mater. Struct.11 (1988) 383.Suche in Google Scholar

[18] A.Navarro, E.R.De Los Rios: Proc. R. Soc.A437 (1992) 375.Suche in Google Scholar

[19] V.Doquet: Fatigue & Fract. Eng. Mater. Struct.22 (1999) 215.Suche in Google Scholar

[20] C.Vallellano, A.Navarco, J.Dominguez: Phil. Mag.A82 (2002) 81.Suche in Google Scholar

[21] V.S.Deshpande, A.Needleman, E.Van der Giessen: Acta Mater.51 (2003) 1.Suche in Google Scholar

[22] Y.H.Zhang, L.Edwards: Mater. Sci. Eng.A188 (1994) 121.Suche in Google Scholar

[23] T.Zhai, A.J.Wilkinson, J.W.Martin: Acta Mater.48 (2000) 4917.Suche in Google Scholar

[24] T.Zhai, X.P.Jiang, X.J.Li, M.D.Garratt, G.H.Bray: Int. J. Fatigue27 (2005) 1202.Suche in Google Scholar

[25] G.P.Potirniche, S.R.Daniewicz, J.C.Newman: Fatigue & Fract. Eng. Mater. Struct.27 (2004) 59.Suche in Google Scholar

[26] M.Marx: Einfluss der Mikrostruktur auf die Ausbreitung von Mikrorissen in der einkristallinen Nickelbasissuperlegierung CMSX-4, Shaker-Verlag, Aachen (2004).Suche in Google Scholar

[27] M.Marx, W.äf, H.Vehoff, C.Holzapfel: Mater. Sci. Eng. A, accepted.Suche in Google Scholar

[28] Y.Akiniwa, K.Tanaka, H.Kimura: Fatigue & Fract. Eng. Mater. Struct.24 (2001) 817.Suche in Google Scholar

[29] D.Kujawski: Int. J. Fatigue23 (2001) 236.10.1016/S0142-1123(01)00158-XSuche in Google Scholar

[30] C.A.Rodopoulus, J.H.Choi, E.R.De Los Rios, J.R.Yates: Int. J. Fatigue26 (2004) 739.Suche in Google Scholar

[31] J.Roesler: private communication.Suche in Google Scholar

[32] H.Mughrabi, M.Ott, U.Tetzlaff: Mater. Sci. Eng. A234 (1997) 434.Suche in Google Scholar

[33] M.Marx, H.Vehoff, W.R.Thiele, in: G.Biallas, H.J.Maier, O.Hahn, K.Hermann, F.Vollertsen (Eds.), CAMP 2003 – High Temperature Fatigue, Bonifatius Verlag, Paderborn (2002) 142.Suche in Google Scholar

[34] W.L.Morris: Metall. Trans. A11 (1980) 1117.10.1007/BF02668135Suche in Google Scholar

[35] W.L.Morris, M.R.James, O.Buck: Metall. Trans.A12 (1981) 57.Suche in Google Scholar

[36] S.M.Ohr: Mat. Sci. Eng. A72 (1985) 1.Suche in Google Scholar

[37] R.Richter, W.Tirschler, C.Blochwitz: Mater. Sci. Eng.A313 (2001) 237.Suche in Google Scholar

[38] C.Blochwitz, W.Tirschler, A.Weidner: Mater. Sci. Eng.A357 (2003) 264.Suche in Google Scholar

[39] http://www.uni-saarland.de/fak8/wwm/research/phd_marx/index_d.shtmSuche in Google Scholar

[40] M.Marx, H.Vehoff: Mater. Sci. Eng. A387 (2004) 511.Suche in Google Scholar

[41] A.J.Wilkinson: Phil. Mag. A81 (2001) 841.10.1080/01418610108214323Suche in Google Scholar

[42] M.T.Welsch, M.Henning, M.Marx, H.Vehoff: submitted to Adv. Eng. Mater.Suche in Google Scholar

[43] M.Henning, H.Vehoff: Acta Mater.53 (2005) 1285.Suche in Google Scholar

Received: 2006-4-7
Accepted: 2006-8-3
Published Online: 2013-05-31
Published in Print: 2006-12-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Basic
  4. Microcracks in superalloys: From local in-situ measurements to lifetime prediction
  5. Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
  6. Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
  7. The nature of the TRIP-effect in metastable austenitic steels
  8. Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
  9. Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
  10. On the Hall–Petch relation between flow stress and grain size
  11. Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
  12. Applied
  13. Strengthening of silicon nitride ceramics by shot peening
  14. Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
  15. New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
  16. Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
  17. Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
  18. Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
  19. Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
  20. Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
  21. DGM News
  22. DGM News
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101392/html
Button zum nach oben scrollen