Criticality safety analysis for GNS IQ® – The Integrated Quiver System for damaged fuel
-
M. Chernykh
Abstract
The phase-out of nuclear energy in Germany has triggered the demand for a comprehensive solution to dispose of damaged fuel rods, normally remaining in the fuel pond until the final shutdown of the NPP. In order to establish a disposal concept for damaged fuel rods suitable for the needs of German utilities, GNS has developed a first of its kind solution, the Integrated Quiver System for Damaged Fuel (GNS IQ®), which can be loaded into the transport and storage casks of the CASTOR® family also by GNS. The GNS IQ® features a robust yet simple design with a high mechanical stability, a reliable leak tightness and large safety margins for future requirements on safety analysis. It can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific needs of the customer. The quiver is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The paper gives a general overview of the disposal concept and provides a description of the Integrated Quiver System for Damaged Fuel with the focus on criticality safety assessment.
Kurzfassung
Der Ausstieg aus der Kernenergie in Deutschland hat die Nachfrage nach einer umfassenden Lösung zur Beseitigung defekter Brennstäbe, die normalerweise bis zur endgültigen Stilllegung des KKW im Brennelementbecken verbleiben, ausgelöst. Im Rahmen der Erstellung eines Entsorgungskonzepts für defekte Brennstäbe, das für die Bedürfnisse deutscher Energieversorgungsunternehmen geeignet ist, hat GNS die erste Lösung dieser Art entwickelt – das integrierte Köcher-System für defekten Brennstoff (GNS IQ®) für die Beladung in die Transport- und Lagerbehälter der CASTOR®-Familie von GNS. Das GNS IQ® zeichnet sich durch ein robustes und dennoch einfaches Design mit hoher mechanischer Stabilität, zuverlässiger Dichtheit und großen Sicherheitsmargen für zukünftige Anforderungen an die Sicherheitsanalyse aus. Es kann leicht an eine Vielzahl verschiedener defekter Brennstäbe angepasst und auf die speziellen Bedürfnisse des Kunden zugeschnitten werden. Das Köcher-System ist anpassbar z.B. in der Länge und im Durchmesser und ist in anderen Transport- und Lagerbehältern und auch in anderen Ländern anwendbar. Der Artikel gibt einen allgemeinen Überblick über das Entsorgungskonzept und beschreibt das integrierte Köcher-System für defekten Brennstoff unter dem Gesichtspunkt der Kritikalitätssicherheit.
References
1 International Atomic Energy Agency (IAEA): Review of Fuel Failures in Water Cooled Reactors. No. NF-T-2.1, IAEA Nuclear Energy Series (2010)Suche in Google Scholar
2 International Atomic Energy Agency (IAEA): Regulations for the Safe Transport of Radioactive Material. 2012 Edition, Specific Safety Requirements No. SSR-6 International Atomic Energy Agency (IAEA), Vienna (2012)Suche in Google Scholar
3 Deutsches Institut für Normung (DIN): Criticality safety in processing and handling of fissile material Part1: Principles. DIN 25403-1:2013-12 (2013)Suche in Google Scholar
4 Deutsches Institut für Normung (DIN): Criticality safety taking into account the burnup of fuel for transport and storage of irradiated light water reactor fuel assemblies in casks. DIN 25712:2015–04 (2015)Suche in Google Scholar
5 Deutsches Institut für Normung (DIN): Application of computer codes for the assessment of criticality safety. DIN 25478:2014–06 (2014)Suche in Google Scholar
6 Oak Ridge National Laboratory (ORNL): SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation. ORNL/TM-2005/39, Version 5.1, Vols. I-III, November 2006. Available from Radiation Safety Information Computational Center at Oak Ridge national Laboratory as CCC-732Suche in Google Scholar
7 Neuber, J. C.: Some words about the 95%/95% tolerance limit. IAEA-TECDOC-1547, Vienna (2007)Suche in Google Scholar
8 International Handbook of Evaluated Criticality Safety Benchmark Experiments. NEA Nuclear Science Committee, NEA/NSC/DOC(95)03, September 2015 EditionSuche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2018
- Technical Contributions/Fachbeiträge
- Development of CASMO5 for VVER-1000/1200 analysis and preliminary validation using critical experiments
- C-PORCA 7: a nodal diffusion reactor calculation code to support off-line and on-line core analysis at Paks nuclear power plant
- Adaptation of the gas gap simplified model in DYN3D code to new types of fuel
- A procedure for verification of Studsvik's spent nuclear fuel code SNF
- Extension of nodal diffusion solver of Ants to hexagonal geometry
- VVER-1000 fuel assembly model in CAD-based unstructured mesh for MCNP6
- Fuel cycles with PK-3+ FAs for VVER-440 reactors
- Prospects for implementation of VVER nuclear fuel enriched above 5%
- Core loading optimisation in Slovak VVER-440 reactors
- Statistical evaluation of C-15 cycles in Paks NPP, based on measured in-core data
- Optimized 18-months low-leakage core loadings for uprated VVER-1000
- Leningrad NPP-2 start-up loss of power test and its simulation with use of KORSAR/GP code
- Assessment of the fuel assembly pin-by-pin model in the KORSAR/GP code
- Comparative thermohydraulic analyses of VVER 1000 active core for two different construction types of assemblies
- Analysis of uncontrolled dilution of boric acid concentration in the reactor VVER-1000/320
- Applied study on optimizing the final disposal of Loviisa NPP spent fuel assemblies
- Criticality safety analysis for GNS IQ® – The Integrated Quiver System for damaged fuel
- Neutron balance in two-component nuclear energy system
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2018
- Technical Contributions/Fachbeiträge
- Development of CASMO5 for VVER-1000/1200 analysis and preliminary validation using critical experiments
- C-PORCA 7: a nodal diffusion reactor calculation code to support off-line and on-line core analysis at Paks nuclear power plant
- Adaptation of the gas gap simplified model in DYN3D code to new types of fuel
- A procedure for verification of Studsvik's spent nuclear fuel code SNF
- Extension of nodal diffusion solver of Ants to hexagonal geometry
- VVER-1000 fuel assembly model in CAD-based unstructured mesh for MCNP6
- Fuel cycles with PK-3+ FAs for VVER-440 reactors
- Prospects for implementation of VVER nuclear fuel enriched above 5%
- Core loading optimisation in Slovak VVER-440 reactors
- Statistical evaluation of C-15 cycles in Paks NPP, based on measured in-core data
- Optimized 18-months low-leakage core loadings for uprated VVER-1000
- Leningrad NPP-2 start-up loss of power test and its simulation with use of KORSAR/GP code
- Assessment of the fuel assembly pin-by-pin model in the KORSAR/GP code
- Comparative thermohydraulic analyses of VVER 1000 active core for two different construction types of assemblies
- Analysis of uncontrolled dilution of boric acid concentration in the reactor VVER-1000/320
- Applied study on optimizing the final disposal of Loviisa NPP spent fuel assemblies
- Criticality safety analysis for GNS IQ® – The Integrated Quiver System for damaged fuel
- Neutron balance in two-component nuclear energy system