Home Technology Optimized 18-months low-leakage core loadings for uprated VVER-1000
Article
Licensed
Unlicensed Requires Authentication

Optimized 18-months low-leakage core loadings for uprated VVER-1000

  • A. L. Egorov , A. M. Pavlovichev , M. A. Sumarokov , S. M. Zaritskiy and A. S. Morozov
Published/Copyright: August 27, 2019
Become an author with De Gruyter Brill

Abstract

The VVER-1000 life extension and power uprating are important areas of research and development activities of JSC “Rosenergoatom”. Recent research has shown that the core baffle resource is one of the major limiting factors for the life extension of the Balakovo NPP unit 3. The core loading optimization is necessary to decrease the core baffle radiation dose for NPP life extension at uprated power. The paper contains the results of the optimization of 18-month low-leakage core loadings for the uprated to 104% Balakovo NPP unit 3. Moreover, the results of the radiation dose calculations at the reactor pressure vessel and core baffle are presented in the work. It is shown that the optimization of the core loadings reduces peaks of radiation doses and flattens its distributions along the core baffle, as well as gives the opportunity to extend the NPP life up to 60 years at the uprated power.

Kurzfassung

Die Betriebsdauerverlängerung und Leistungssteigerung des VVER-1000 sind wichtige Forschungs- und Entwicklungsaktivitäten der JSC „Rosenergoatom“. Neuere Untersuchungen haben gezeigt, dass der Kernbehälter einer der wichtigsten limitierenden Faktoren für die Betriebsdauerverlängerung des Kernkraftwerks Balakovo 3 ist. Die Optimierung der Kernbeladung ist notwendig, um die Strahlendosis des Kernbehälters zur Verlängerung der Lebensdauer des Kernkraftwerks bei erhöhter Nennleistung zu verringern. Dieser Beitrag beschriebt die Ergebnisse der Optimierung von 18-monatigen leckagearmen Kernbeladungen für den auf 104% erhöhten Kernkraftwerksblock 3 Balakovo. Darüber hinaus werden die Ergebnisse der Strahlendosisberechnungen am Reaktordruckbehälter und Kernbehälter in der Arbeit vorgestellt. Es zeigt sich, dass die Optimierung der Kernbelastungen Strahlungsdosisspitzen reduziert und deren Verteilung entlang der Kernbehälterwand abflacht. Dadurch bietet sich die Möglichkeit, die Lebensdauer des Kernkraftwerks mit der erhöhten Leistung auf bis zu 60 Jahre zu verlängern.


E-Mail:

References

1 Pavlovichev, A. M.; Zaritsky, S. M.; Dadakina, L. L.: Estimation of the fast neutron flux density distribution on the inner surface of VVER pressure vessel in frame of the fuel loading optimization. Radiation Protection and Shielding, Topical Meeting, April 21–25, 1996, No. Falmouth, Mass., USA, pp. 3642Search in Google Scholar

2 LizorkinM.: Development of codes and KASKAD complex. 24-th symposium of AER on VVER Reactor Physics and Reactor Safety, 2014, Sochi, RussiaSearch in Google Scholar

3 Vasilchenko, I.; Kushmanov, S.; Vjalitsyn, V.; Vasilchenko, R.: Core design of modern VVER project. 11th International conference on WWER fuel performance, modelling and experimental support, 2015, Varna, BulgariaSearch in Google Scholar

4 Rhoades, W. A.; Simpson, D. B.: The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT Version 3). ORNL/TM-13221Search in Google Scholar

5 Rhoades, W. A.; Childs, R. L.: TORT: A three-dimensional discrete ordinates neutron/photon transport code. Nuclear Science and Engineering107 (1991) 39739810.13182/NSE91-A23802Search in Google Scholar

6 DOORS 3.2: One-, two- and three-dimensional discrete ordinates neutron/photon transport code system. RSIC CODE PACKAGE CCC-650Search in Google Scholar

7 White, J. E.; Ingersoll, D. T.; Slater, C.O.; Roussin, R. W.: BUGLE-96: Coupled 47 Neutron, 20 Gamma-Ray Group Cross Section Library Derived from ENDF/B-VI for LWR Shielding and Pressure Vessel Dosimetry Applications. RSIC Data Library Collection, DLC-185, March 1996Search in Google Scholar

Received: 2019-02-14
Published Online: 2019-08-27
Published in Print: 2019-09-16

© 2019, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Editorial
  4. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2018
  5. Technical Contributions/Fachbeiträge
  6. Development of CASMO5 for VVER-1000/1200 analysis and preliminary validation using critical experiments
  7. C-PORCA 7: a nodal diffusion reactor calculation code to support off-line and on-line core analysis at Paks nuclear power plant
  8. Adaptation of the gas gap simplified model in DYN3D code to new types of fuel
  9. A procedure for verification of Studsvik's spent nuclear fuel code SNF
  10. Extension of nodal diffusion solver of Ants to hexagonal geometry
  11. VVER-1000 fuel assembly model in CAD-based unstructured mesh for MCNP6
  12. Fuel cycles with PK-3+ FAs for VVER-440 reactors
  13. Prospects for implementation of VVER nuclear fuel enriched above 5%
  14. Core loading optimisation in Slovak VVER-440 reactors
  15. Statistical evaluation of C-15 cycles in Paks NPP, based on measured in-core data
  16. Optimized 18-months low-leakage core loadings for uprated VVER-1000
  17. Leningrad NPP-2 start-up loss of power test and its simulation with use of KORSAR/GP code
  18. Assessment of the fuel assembly pin-by-pin model in the KORSAR/GP code
  19. Comparative thermohydraulic analyses of VVER 1000 active core for two different construction types of assemblies
  20. Analysis of uncontrolled dilution of boric acid concentration in the reactor VVER-1000/320
  21. Applied study on optimizing the final disposal of Loviisa NPP spent fuel assemblies
  22. Criticality safety analysis for GNS IQ® – The Integrated Quiver System for damaged fuel
  23. Neutron balance in two-component nuclear energy system
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.190025/html
Scroll to top button