Startseite Adaptation of the gas gap simplified model in DYN3D code to new types of fuel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adaptation of the gas gap simplified model in DYN3D code to new types of fuel

  • M. Ieremenko und Iu. Ovdiienko
Veröffentlicht/Copyright: 27. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Currently, new types of fuel are being considered to be introduced or already in the introduction process at Ukrainian NPPs with WWER. By means of a new version of the TRANSURANUS code, new functions of the gas gap thickness in dependence on the burnup have been created and implemented into the gas gap model of the reactor dynamics code DYN3D. These new functions cover all actual and perspective fuel types for the Ukrainian NPPs with WWER.

Kurzfassung

Derzeit wird der Einsatz neuer Brennelemente in ukrainischen Kernkraftwerken des Typs WWER erwogen. Mit Hilfe einer neuen Version des TRANSURANUS-Codes wurden neue Funktionen der Gasspaltweite in Abhängigkeit vom Abbrand entwickelt und in das Gasspaltmodell des Reaktordynamikcodes DYN3D implementiert. Damit können nun alle aktuellen und für die Zukunft der ukrainischen KKW bislang angedachten Brennelemente berechnet werden.


E-mail:

References

1 Rohde, U.: The modelling of fuel rod behaviour under RIA conditions in the code DYN3D. Annals of Nucl. Energy28 (2001) 1343136310.1016/S0306-4549(00)00128-6Suche in Google Scholar

2 Kliem, S.; et al.: The reactor dynamics code DYN3D. Kerntechnik81 (2016) 17017210.3139/124.110692Suche in Google Scholar

3 Rohde, U. et al.: The reactor dynamics code DYN3D – Models, validation and applications. Progress in Nuclear Energy89 (2016) 1709010.1016/j.pnucene.2016.02.013Suche in Google Scholar

4 Lassmann, K.: TRANSURANUS: a fuel rod analysis code ready for use. Journal of Nuclear Materials188 (1992) 29530210.1016/0022-3115(92)90487-6Suche in Google Scholar

5 Gagarinskiy, A. A.; Osipova, E. S.; Kalinin, Yu. P.: Advantages of VVER-440 fuel cycles with new fuel assemblies. Kerntechnik83 (2018) 30731310.3139/124.110904Suche in Google Scholar

6 Teräsvirta, R.: Operational experience of nuclear fuel in Finnish nuclear power plants (with emphasis on VVER fuel). Proceedings of the 8th International Conference on WWER Fuel Performance, Modelling and Experimental Support. Helena Resort near Burgas, Bulgaria 26 September–4 October 2009, p. 5662Suche in Google Scholar

7 ESSANUF project. http://www.essanuf.eu/Suche in Google Scholar

8 WestinghouseNuclear: Nuclear Fuel. Integral Fuel Burnable Absorber (IFBA) Fuel Cycles and IFBA/Gad Hybrid Fuel Cycles. http://www.westinghousenuclear.com/Portals/0/operating%20plant%20services/fuel/fuel%20products/NFCM-0117CEAflysheet.pdfSuche in Google Scholar

9 WestinghouseNuclear: VVER-1000 Fuel Products. http://www.westinghousenuclear.com/Portals/0/operating%20plant%20services/fuel/fuel%20products/VVER1000_blad%20och%20tabellsida.pdfSuche in Google Scholar

10 Samoilov, O.; Kaydalov, V.; Romanov, A.; Falkov, A.; Morozkin, O.; Sholin, E.: Development of TVSA WWER-1000 Fuel. Proceedings of the 10th Int. Conf. WWER Fuel Performance, Modelling and Experimental Support, 7–14 September 2013, Sandanski, Bulgaria, pp. 195198Suche in Google Scholar

11 Molchanov, V.: Nuclear fuel for NPPs: Current status and main trends of development. Proceedings of the 10th Int. Conf. WWER Fuel Performance, Modelling and Experimental Support, 7–14 September 2013, Sandanski, Bulgaria, pp. 3445Suche in Google Scholar

12 Kaichao, Sun: MCNP modeling of hexagon VVER fuel. Master of Science Thesis. Reactor Physics Department. Royal Institute of Technology. Stockholm, Sweden, 2008Suche in Google Scholar

13 Walker, E. D.: Modeling integral fuel burnable absorbers using the method of characteristics. Masters Theses Graduate School. University of Tennessee, Knoxville. 12–2014. http://trace.tennessee.edu/cgi/viewcontent.cgi?article=4249&context=utk_gradthesSuche in Google Scholar

14 Ieremenko, M.; Ovdiienko, Yu.: Effect of burnup dependence of fuel-cladding gap properties on WWER core characteristics. Proceedings of the 20th SYMPOSIUM of AER on VVER Reactor Physics and Reactor Safety 20–24 September 2010, Espoo, Finland, p. 539550Suche in Google Scholar

15 Ovdiienko, I.; Dybach, O.; Gumenyuk, D.; Ieremenko, M.: Ukrainian Experience in Diversification of Nuclear Fuel Supplies in Line with the European Energy Security Strategy. Proceedings of the EUROSAFE Forum 2017 Paris, 6 and 7 November 2017. ISBN 978-2-9545237-8-1. p. 3744Suche in Google Scholar

16 Lötsch, T.; Khalimonchuk, V.; Kuchin, A.: Proposal of a benchmark for core burnup calculations for a WWER-1000 reactor core. Proceedings of the 19th AER Symposium on WWER Reactor Physics and Reactor Safety, St. Constantine and Elena resort, Bulgaria, Sept. 21–25, 2009, p. 53108Suche in Google Scholar

17 Lötsch, T.; Khalimonchuk, V.; Kuchin, A.: Corrections and additions to the proposal of a benchmark for core burnup calculations for a WWER- 1000 reactor. Proceedings of the 20th AER Symposium on WWER Reactor Physics and Reactor Safety, Hanasaari, Espoo, Finland, Sept. 20–24, 2010, p. 249336Suche in Google Scholar

Received: 2019-02-15
Published Online: 2019-08-27
Published in Print: 2019-09-16

© 2019, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Editorial
  4. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2018
  5. Technical Contributions/Fachbeiträge
  6. Development of CASMO5 for VVER-1000/1200 analysis and preliminary validation using critical experiments
  7. C-PORCA 7: a nodal diffusion reactor calculation code to support off-line and on-line core analysis at Paks nuclear power plant
  8. Adaptation of the gas gap simplified model in DYN3D code to new types of fuel
  9. A procedure for verification of Studsvik's spent nuclear fuel code SNF
  10. Extension of nodal diffusion solver of Ants to hexagonal geometry
  11. VVER-1000 fuel assembly model in CAD-based unstructured mesh for MCNP6
  12. Fuel cycles with PK-3+ FAs for VVER-440 reactors
  13. Prospects for implementation of VVER nuclear fuel enriched above 5%
  14. Core loading optimisation in Slovak VVER-440 reactors
  15. Statistical evaluation of C-15 cycles in Paks NPP, based on measured in-core data
  16. Optimized 18-months low-leakage core loadings for uprated VVER-1000
  17. Leningrad NPP-2 start-up loss of power test and its simulation with use of KORSAR/GP code
  18. Assessment of the fuel assembly pin-by-pin model in the KORSAR/GP code
  19. Comparative thermohydraulic analyses of VVER 1000 active core for two different construction types of assemblies
  20. Analysis of uncontrolled dilution of boric acid concentration in the reactor VVER-1000/320
  21. Applied study on optimizing the final disposal of Loviisa NPP spent fuel assemblies
  22. Criticality safety analysis for GNS IQ® – The Integrated Quiver System for damaged fuel
  23. Neutron balance in two-component nuclear energy system
Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.190029/html
Button zum nach oben scrollen