Startseite Analysis of uncontrolled dilution of boric acid concentration in the reactor VVER-1000/320
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of uncontrolled dilution of boric acid concentration in the reactor VVER-1000/320

  • J. Hádek und R. Meca
Veröffentlicht/Copyright: 27. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The paper gives a description of conservative analysis of initiating event associated with uncontrolled dilution of boric acid concentration in the reactor VVER-1000/320 of Temelín NPP. This event is included in the group of beyond design basis accidents. The aim of analysis is to determine also the time interval which is necessary for interventions leading to the deterrence of fuel damage. The failure of operator intervention to isolate dilution routes at intervals shorter than 30 min is assumed. Since the response of the whole NPP system influences the course of safety important parameters of the reactor core, the calculations were made by an externally coupled version of the 3D reactor dynamic code DYN3D and the thermohydraulic system code ATHLET. It is shown that, in addition to exceeding the DNBR limit of more than 99 min from the start of the transient, the remaining safety acceptance criteria will not be violated until the end of the calculation.

Kurzfassung

Das Papier gibt eine Beschreibung der konservativen Analyse des auslösenden Ereignisses im Zusammenhang mit der unkontrollierten Verdünnung der Borsäurekonzentration im Reaktor VVER-1000/320 des Kernkraftwerks Temelín. Dieses Ereignis ist Teil der Gruppe der Unfälle, die über die Auslegungskriterien hinausgehen. Ziel der Analyse ist es, auch das Zeitintervall zu bestimmen, das für Eingriffe zur Verhinderung von Brennstabschäden notwendig ist. Es wird davon ausgegangen, dass es dem Operator nicht gelingt, die Verdünnungswege innerhalb von 30 Minuten zu isolieren. Da die Reaktion des gesamten KKW-Systems den Verlauf der sicherheitstechnisch wichtigen Parameter des Reaktorkerns beeinflusst, wurden die Berechnungen mit einer extern gekoppelten Version des 3D-Reaktor-Dynamikcodes DYN3D und des thermohydraulischen Systemcodes ATHLET durchgeführt. Es wird gezeigt, dass außer der Überschreitung des DNBR-Grenzwertes von mehr als 99 Minuten ab Beginn der Transiente die verbleibenden Akzeptanzkriterien bis zum Ende der Berechnung nicht verletzt werden.


E-mail:

References

1 Hádek, J.; Meca, R: Analysis Associated with Uncontrolled Dilution of Boric Acid Concentration in the Reactor VVER-1000/320. Paper and presentation. Proceedings of the twenty-eighth Symposium of AER, Olomouc, Czech Republic, October 8–12, 2018, p. 745, ISBN 978-963-7351-30-3, ISBN 978-963-7351-31-0Suche in Google Scholar

2 Austregesilo, H.; Bals, C; Hora, A.; Lerchl, G.; Romstedt, P.: ATHLET, Mod 2.1 Cycle A, Models and Methods. GRS-P-1, Vol. 4, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Germany, 2006Suche in Google Scholar

3 Rohde, U.; Kliem, S.; Grundmann, U.; Baier, S.; Bilodid, Y.; Duerigen, S.; Fridman, E.; Gommlich, A.; Grahn, A.; Holt, L.; Kozmenkov, Y.; Mittag, S.: The reactor dynamics code DYN3D – models, validation and applications. Progress in Nuclear Energy Vol.89 (2016), p. 170 10.1016/j.pnucene.2016.02.013Suche in Google Scholar

4 Manera, A.; Rohde, U.; Prasser, H.-M.; van der Hagen, T. H.J.: Modeling of Flashing-Induced Instabilities in the Start-Up Phase of Natural-Circulation BWRs Using the Code FLOCAL. Nuclear Engineering and Design, Vol.235 (2005), p. 1517 10.1016/j.nucengdes.2005.01.008Suche in Google Scholar

5 Grundmann, U.; Lucas, D.; Rohde, U.: Coupling of the Thermohydraulic Code Athlet with the Neutron Kinetic Core Model DYN3D. Proceedings of the International Conference on Mathematics and Computations, Physics and Environmental Analysis, Portland, Oregon, USA, April 30 – May 5, 1995, Vol. 1, p. 179Suche in Google Scholar

6 Grundmann, U.; Kliem, S.; Rohde, U.: Analysis of the Boiling Water Reactor Turbine Trip Benchmark with the Codes DYN3D and ATHLET/DYN3D. Nuclear Science and Engineering148 (2004), p. 226 10.13182/NSE04-A2453Suche in Google Scholar

7 Kozmenkov, Y.; Kliem, S.; Rohde, U.: Validation and verification of the coupled neutron kinetic/thermalhydraulic system code DYN3D/ATHLET. Annals of Nuclear Energy84 (2015), p. 153 10.1016/j.anucene.2014.12.012Suche in Google Scholar

8 Hádek, J.; Meca, R.: Contribution to the validation of the VVER-1000 Temelin NPP computing model for the ATHLET/DYN3D coupled codes. Kerntechnik83 (2018) 4, p. 376 10.3139/124.110902Suche in Google Scholar

9 Kliem, S.; Kozmenkov, Y.; Höhne, T.; Rohde, U.: Analyses of the V1000CT-1 Benchmark with the DYN3D/ATHLET and DYN3D/RELAP Coupled Code Systems Including a Coolant Mixing Model Validated Against CFD Calculations. Progress in Nuclear Energy, Vol.48 (2006), p. 830 10.1016/j.pnucene.2006.06.008Suche in Google Scholar

10 Casal, J. J.; Stammler, R. J. J.; Villarino, E. A.; Feri, A. A.: HELIOS: Geometric Capabilities of a New Fuel Assembly Program. Proceedings of the International Topical Meeting on Advances in Mathematics, Computation, and Reactor Physics, Pittsburgh, PA, USA, April 28 – May 2, 1991, Vol. 2, p. 102Suche in Google Scholar

11 Tinka, I.: VVER Diffusion Data Libraries Prepared by the KASSETA Code. Proceedings of the 3rd Symposium of AER, Piešťany, Slovak Republic, September 27–October 1, 1993Suche in Google Scholar

12 Samoilov, O. B.; Kaidalov, V. B.; Falkov, A. A.; Bolnov, V. A.; Morozkin, O. N.; Molchanov, V. L., Ugruymov, A. V.: TVSA-T fuel assembly for “Temelin” NPP. Main results of design and safety analyses. Trends of development. International conference “VVER-2010, Experience and Perspectives”, Prague, Czech Republic, November 1–3, 2010, https://inis.iaea.org/search/search.aspx?orig_q=RN:42016152Suche in Google Scholar

13 Baker, L.; Just, L. C.: Studies of Metal-Water Reactions at High Temperatures; III. Experimental and Theoretical Studies of the Zirconium-Water Reaction 10.2172/4781681Suche in Google Scholar

Received: 2019-02-12
Published Online: 2019-08-27
Published in Print: 2019-09-16

© 2019, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Editorial
  4. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2018
  5. Technical Contributions/Fachbeiträge
  6. Development of CASMO5 for VVER-1000/1200 analysis and preliminary validation using critical experiments
  7. C-PORCA 7: a nodal diffusion reactor calculation code to support off-line and on-line core analysis at Paks nuclear power plant
  8. Adaptation of the gas gap simplified model in DYN3D code to new types of fuel
  9. A procedure for verification of Studsvik's spent nuclear fuel code SNF
  10. Extension of nodal diffusion solver of Ants to hexagonal geometry
  11. VVER-1000 fuel assembly model in CAD-based unstructured mesh for MCNP6
  12. Fuel cycles with PK-3+ FAs for VVER-440 reactors
  13. Prospects for implementation of VVER nuclear fuel enriched above 5%
  14. Core loading optimisation in Slovak VVER-440 reactors
  15. Statistical evaluation of C-15 cycles in Paks NPP, based on measured in-core data
  16. Optimized 18-months low-leakage core loadings for uprated VVER-1000
  17. Leningrad NPP-2 start-up loss of power test and its simulation with use of KORSAR/GP code
  18. Assessment of the fuel assembly pin-by-pin model in the KORSAR/GP code
  19. Comparative thermohydraulic analyses of VVER 1000 active core for two different construction types of assemblies
  20. Analysis of uncontrolled dilution of boric acid concentration in the reactor VVER-1000/320
  21. Applied study on optimizing the final disposal of Loviisa NPP spent fuel assemblies
  22. Criticality safety analysis for GNS IQ® – The Integrated Quiver System for damaged fuel
  23. Neutron balance in two-component nuclear energy system
Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.190015/html
Button zum nach oben scrollen