Startseite Fuel cycles with PK-3+ FAs for VVER-440 reactors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fuel cycles with PK-3+ FAs for VVER-440 reactors

  • P. Mikoláš und J. Vimpel
Veröffentlicht/Copyright: 27. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In order to increase the efficiency of fuel utilization at Dukovany NPP, the design of FA was changed by shroud removal and replacement with a structure called “Karkas”. Optimization of PK-3+ type FAs with different average enrichments was performed in order to find out those enrichment profiles with minimized non-uniform energy generation in FA (during burn-up). In addition, it was assumed that such a radial enrichment profile in FA could be achieved by making a change in the location of the fuel pin with a Gd2O3 burnable absorber – from the 2nd row to the 3rd row of pins from the edge of the fuel assembly on the fuel assembly diagonal. The aim of this study was to achieve a full quadruplicate cycle, every 15 months (approx. 450 days) at 1475 MWt nominal power. Preliminary results indicate that combination of PK-3+ and Gd-2M+ fuel assemblies does not show any unusual phenomena from the point of view of reactor physics. The proposed strategy is based on B1C33 cycle implemented at Dukovany NPP that is designed to be 395 FPDs. Already in the first “transient” cycle (34th) loaded with 60 fresh PK-3+ FAs and 12 Gd-2M++ CAs, the reached length at EOR is 424 FPDs, which means stretch-out 26 effective days. Averaged, the transition cycle stretch-out length is 23.5 effective days. For steady cycles, this average value is 19.2 effective days.

Kurzfassung

Um die Effizienz der Brennstoffausnutzung im Kernkraftwerk Dukovany zu erhöhen, wurde das Design der FA durch Entfernen der Hülle und Ersetzen durch eine Struktur namens „Karkas“ geändert. Es wurde eine Optimierung der PK-3+ Typ Brennelemente mit unterschiedlichen durchschnittlichen Anreicherungen durchgeführt, um jene Anreicherungsprofile mit minimierter ungleichmäßiger Energieerzeugung in FA (beim Abbrand) herauszufinden. Darüber hinaus wurde angenommen, dass ein solches radiales Anreicherungsprofil in Brennelementen durch eine Änderung des Ortes des Absorberstabs mit dem abbrennbaren Gd2O3 erreicht werden kann – von der zweiten Reihe in die dritte Reihe der Brennstäbe vom Rand des Brennelements auf der Brennelementdiagonalen aus gesehen. Ziel dieser Studie war es, alle 15 Monate (ca. 450 Tage) bei 1475 MWt Nennleistung einen vollständigen Vierfachzyklus zu erreichen. Vorläufige Ergebnisse deuten darauf hin, dass die Kombination von PK-3+- und Gd-2M+-Brennelementen keine ungewöhnlichen Phänomene aus reaktorphysikalischer Sicht zeigt. Die vorgeschlagene Strategie basiert auf dem B1C33-Zyklus, der im KKW Dukovany implementiert wurde und auf 395 FPDs ausgelegt ist. Bereits im ersten „transienten“ Zyklus (34.), der mit 60 frischen PK-3+ FAs und 12 Gd-2M++ CAs beladen ist, beträgt die erreichte Zykluslänge 424 FPDs, was einer Verlängerung von 26 effektiven Tagen entspricht. Im Durchschnitt beträgt die Strecklänge des Übergangszyklus 23,5 effektive Tage. Für Gleichgewichtszyklen beträgt dieser Durchschnittswert 19,2 effektive Tage.


E-mail:

References

1 Newton, T. D.; et al.: The ANSWERS Software Package, WIMS – A Modular Scheme for Neutronics Calculations, User Guide for Version 10. ANSWERS/WIMS/REPORT/099, UK, 2014Suche in Google Scholar

2 Shchekin, I. G. et al.: TECHNICAL REFERENCE – Technical and economic assessment of the feasibility of implementing the design of a shroudless WFA PK-3+ for the Dukovany NPP. 467-Pr-003, OKB “GIDROPRESS”, Moscow, 2017 (in Russian)Suche in Google Scholar

3 Mikoláš, P.; Fazekašová, Z.: Proposals of PK-3+ FAs type for Dukovany NPP. Report Škoda JS a.s. Ae 17660/Dok, Rev. 0, Pilsen, 2018 (in Czech)Suche in Google Scholar

4 Vimpel, J.: Fourfold (16-month) fuel cycle with PK-3+ fuel assembly with an average enrichment of 4.73 wt% 235U. Report Škoda JS a.s. Ae 18089/Dok, Rev. 0, Pilsen, 2018 (in Czech)Suche in Google Scholar

5 Čada, R.: ATHENA, Version 3.5, Manual. West Bohemia University, Agreement 3894/BO/17, Pilsen, 2017 (in Czech)Suche in Google Scholar

6 Krýsl, V.; Šůstek, J.; Fraňková, P.: Modernization of the MOBY-DICK macrocode, Report Škoda JS a.s. Ae 17073/Dok, Rev. 0, Pilsen, 2017 (in Czech)Suche in Google Scholar

7 Bajgl, J.: Setting of optimization calculations for the 34th to 40th fuel cycle at Dukovany NPP Unit 1 with PK-3+ fuel assemblies. E-mail communication: ČEZ a.s., Dukovany NPP – Škoda JS a.s., 2018 (in Czech)Suche in Google Scholar

Received: 2019-02-14
Published Online: 2019-08-27
Published in Print: 2019-09-16

© 2019, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Editorial
  4. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2018
  5. Technical Contributions/Fachbeiträge
  6. Development of CASMO5 for VVER-1000/1200 analysis and preliminary validation using critical experiments
  7. C-PORCA 7: a nodal diffusion reactor calculation code to support off-line and on-line core analysis at Paks nuclear power plant
  8. Adaptation of the gas gap simplified model in DYN3D code to new types of fuel
  9. A procedure for verification of Studsvik's spent nuclear fuel code SNF
  10. Extension of nodal diffusion solver of Ants to hexagonal geometry
  11. VVER-1000 fuel assembly model in CAD-based unstructured mesh for MCNP6
  12. Fuel cycles with PK-3+ FAs for VVER-440 reactors
  13. Prospects for implementation of VVER nuclear fuel enriched above 5%
  14. Core loading optimisation in Slovak VVER-440 reactors
  15. Statistical evaluation of C-15 cycles in Paks NPP, based on measured in-core data
  16. Optimized 18-months low-leakage core loadings for uprated VVER-1000
  17. Leningrad NPP-2 start-up loss of power test and its simulation with use of KORSAR/GP code
  18. Assessment of the fuel assembly pin-by-pin model in the KORSAR/GP code
  19. Comparative thermohydraulic analyses of VVER 1000 active core for two different construction types of assemblies
  20. Analysis of uncontrolled dilution of boric acid concentration in the reactor VVER-1000/320
  21. Applied study on optimizing the final disposal of Loviisa NPP spent fuel assemblies
  22. Criticality safety analysis for GNS IQ® – The Integrated Quiver System for damaged fuel
  23. Neutron balance in two-component nuclear energy system
Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.190022/html
Button zum nach oben scrollen