Home Neutron balance in two-component nuclear energy system
Article
Licensed
Unlicensed Requires Authentication

Neutron balance in two-component nuclear energy system

  • V. Blandinskiy
Published/Copyright: August 27, 2019
Become an author with De Gruyter Brill

Abstract

Most nuclear reactors under operation are thermal reactors, which consume 235U in once-through fuel cycle resulting in ineffective resource utilization and dramatic SNF volume growth. However, sustainable nuclear energy system (NES) should provide NFC closing for all hazardous radionuclides to minimize its life-time within NES and to make risk to be proportional to NES capacity, rather than total energy produced. These two basic principles require enough amount of neutrons for both energy generation and hazardous radionuclides transition to fission products. Therefore, taking into account politic, economic and technological risks and uncertainties, these issues can be solved in terms of two-component NES consisting of both thermal and fast reactors. In this work two methods to estimate neutron balance in NES are discussed. The fist method is based on the analysis of nuclear transformation chain due to radioactive decays and neutron induced reactions. The second one is the most complete one and relies on reaction rates comparison. Neutron balance estimation approach is demonstrated for two-component NES case study.

Kurzfassung

Die meisten in Betrieb befindlichen Kernreaktoren sind thermische Reaktoren, die 235U im Durchlaufbrennstoffkreislauf verbrauchen, was zu einer ineffektiven Ressourcenausnutzung und einem deutlichen Wachstum des Abfallvolumens führt. Ein nachhaltiges Kernenergiesystem (NES) sollte eine Schließung des Kreislaufes für alle gefährlichen Radionuklide vorsehen, um die Lebensdauer innerhalb von NES zu minimieren und das damit einhergehende Risiko proportional zur NES-Kapazität zu entwickeln und nicht zur gesamten erzeugten Energie. Diese beiden Grundprinzipien erfordern eine ausreichende Menge an Neutronen sowohl für die Energieerzeugung als auch für den Umwandlung gefährlicher Radionuklide in Spaltprodukte. Unter Berücksichtigung politischer, wirtschaftlicher und technologischer Risiken und Unsicherheiten können diese Probleme daher im Sinne einer Zweikomponenten-NES-Lösung gelöst werden, die aus thermischen und schnellen Reaktoren besteht. In dieser Arbeit werden zwei Methoden zur Abschätzung der Neutronenbilanz in NES diskutiert. Die erste Methode basiert auf der Analyse der nuklearen Zerfallskette infolge radioaktiver Zerfälle und neutroneninduzierter Reaktionen. Die zweite ist die vollständigste und basiert auf dem Vergleich der Reaktionsraten. Der Ansatz zur Abschätzung des Neutronenhaushalts wird am Beispiel der Zweikomponenten-Fallstudie für das NES beschrieben.


E-mail:

References

1 Alekseev, P. N.; Asmolov, V. G.; Gagarinskii, A. Yu.; et al.: On a nuclear power strategy of Russia to 2050. Atomic Energy111 (2012) 23925110.1007/s10512-012-9484-ySearch in Google Scholar

2 Salvatores, M.; Slessarev, I.; Uematsu, M.: Global physics approach to transmutation of radioactive nuclei. Nuclear Science and Engineering116 (1994) 11810.13182/NSE94-A21476Search in Google Scholar

3 Shmelev, A. N.; Kulikov, G. G.; Kulikov, E. G.: Neutron-physical fundamentals of nuclear hybrid “Fusion-Fission” technology (improved fuel utilization in a reactor nuclear fuel cycle): Study Guide. Moscow, NRNU MEPI, 2014 [in Russian]Search in Google Scholar

4 Alekseevsky, L. D.: Issues of atomic science and technology. Physics of Nuclear Reactors Series2 (2008) 2126 [in Russian]Search in Google Scholar

Received: 2019-02-19
Published Online: 2019-08-27
Published in Print: 2019-09-16

© 2019, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Editorial
  4. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2018
  5. Technical Contributions/Fachbeiträge
  6. Development of CASMO5 for VVER-1000/1200 analysis and preliminary validation using critical experiments
  7. C-PORCA 7: a nodal diffusion reactor calculation code to support off-line and on-line core analysis at Paks nuclear power plant
  8. Adaptation of the gas gap simplified model in DYN3D code to new types of fuel
  9. A procedure for verification of Studsvik's spent nuclear fuel code SNF
  10. Extension of nodal diffusion solver of Ants to hexagonal geometry
  11. VVER-1000 fuel assembly model in CAD-based unstructured mesh for MCNP6
  12. Fuel cycles with PK-3+ FAs for VVER-440 reactors
  13. Prospects for implementation of VVER nuclear fuel enriched above 5%
  14. Core loading optimisation in Slovak VVER-440 reactors
  15. Statistical evaluation of C-15 cycles in Paks NPP, based on measured in-core data
  16. Optimized 18-months low-leakage core loadings for uprated VVER-1000
  17. Leningrad NPP-2 start-up loss of power test and its simulation with use of KORSAR/GP code
  18. Assessment of the fuel assembly pin-by-pin model in the KORSAR/GP code
  19. Comparative thermohydraulic analyses of VVER 1000 active core for two different construction types of assemblies
  20. Analysis of uncontrolled dilution of boric acid concentration in the reactor VVER-1000/320
  21. Applied study on optimizing the final disposal of Loviisa NPP spent fuel assemblies
  22. Criticality safety analysis for GNS IQ® – The Integrated Quiver System for damaged fuel
  23. Neutron balance in two-component nuclear energy system
Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.190030/html
Scroll to top button